Chandru, M and Das, P and Ramos, H. (2018) Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Mathematical Methods in the Applied Sciences, 41 (14). pp. 5359-5387. ISSN 1099-1476
13.pdf
Restricted to Registered users only
Download (7MB) | Request a copy
Abstract
In the present work, we consider a parabolic convection-diffusion-reaction problem where the diffusion and convection terms are multiplied by two small parameters, respectively. In addition, we assume that the convection coefficient
and the source term of the partial differential equation have a jump discontinuity. The presence of perturbation parameters leads to the boundary and interior layers phenomena whose appropriate numerical approximation is the main goal
of this paper. We have developed a uniform numerical method, which converges almost linearly in space and time on a piecewise uniform space adaptive Shishkin-type mesh and uniform mesh in time. Error tables based on several
examples show the convergence of the numerical solutions. In addition, several numerical simulations are presented to show the effectiveness of resolving layer behavior and their locations
Item Type: | Article |
---|---|
Subjects: | AC Rearch Cluster |
Depositing User: | Unnamed user with email techsupport@mosys.org |
Date Deposited: | 16 Dec 2023 06:45 |
Last Modified: | 16 Dec 2023 06:45 |
URI: | https://ir.vignan.ac.in/id/eprint/574 |