K., VenkataRao and Yekula Prasanna, Kumar and ijay Kumar, Singh and Lam, Suvrna and Jinka, Ranganayakulu (2021) Vibration-based tool condition monitoring in milling of Ti-6Al-4V using an optimization model of GM(1,N) and SVM. The International Journal of Advanced Manufacturing Technology, 115. pp. 1931-1941. ISSN 1433-3015
4.pdf
Restricted to Registered users only
Download (1MB) | Request a copy
Abstract
Titanium alloys are the difficult to cut metals due to their low thermal conductivity and chemical affinity with tool material. Since the tool vibration is a replica of tool wear and surface roughness, the present study has proposed a methodology for estimating tool wear and surface roughness based on tool
vibration for milling of Ti-6Al-4V alloy using cemented carbide mill cutter. Experiments are conducted at optimum levels of cutting speed, feed per tooth and depth of cut and experimental results for the tool vibration, tool wear and surface roughness are collected until the flank wear reached 0.3 mm (ISO3685:1993). In the next stage, an optimization model of grey prediction GM(1,N) system and support vector machine (SVM) are used and estimated tool wear and surface roughness related to tool vibration.The predicted values of tool wear and surface roughness are compared with the experimental results. The
optimization model of GM(1,N) predicted the tool wear and surface roughness with an average error of 3.03% and as 0.7% respectively while the SVM predicted with an average error of 7.67% and 4.45% respectively
Item Type: | Article |
---|---|
Subjects: | AC Rearch Cluster |
Depositing User: | Unnamed user with email techsupport@mosys.org |
Date Deposited: | 11 Dec 2023 06:15 |
Last Modified: | 11 Dec 2023 06:15 |
URI: | https://ir.vignan.ac.in/id/eprint/451 |