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1. Introduction and Preliminaries

The concept of b-metric spaces is considered the most important generalization to the
metric spaces. Recently, fixed points of contractive mappings in b-metric spaces have been
applied in pure and applied mathematics, with several applications for scientific problems.
Fixed points results in b-metric spaces are very useful to many scholars. This concept was
first introduced by Bakhtin [1] in 1983, and later was expanded by Czerwik [2]. In 2004,
Ran and Reurings [3] initiated fixed point results in partially ordered b-metric space. Since
then, the idea has been generalized and extended by many authors in many different
metric spaces, with contraction conditions found in sources such as [4-26]. Additionally,
these results have been applied to differential equations, including differential and integral
equations, to find unique solutions.

First of all, we remind the reader of the definition of partially ordered b-metric spaces.

Definition 1 ([6]). A mapping 2 : & X & — [0, +0), where S is a non-empty set is known to be
a b-metric, if 2 satisfies the below properties for any 01, 0,, 05 € & and for some real number 5 > 1,
(a)  72(01,02) = 0ifand only if 61 = 6y;
(b)  72(01,02) = 12(62,01);
() 72(61,02) < 3(72(01,05) + 2(05,02)).

Then (S, 22, 3) is known as a b-metric space. If (&, =) is still a partially ordered set, then
(6, 1, 3,=) is called a partially ordered b-metric space.

Definition 2 ([6]). Let (S, 2,3, =) be a b-metric space. Then
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(1).

(2).
(3).

a sequence {60, } is said to converge to 0, if 2(6,,0) — 0asn — -oco and written as
lim 6, = 6.

n—+00
{6, } is said to be a Cauchy sequence in &, if 72(6y,6,) — 0, as n,m — +o0.
(6, 12, 3) is said to be complete, if every Cauchy sequence in it is convergent.

Definition 3. If the metric s is complete, then (S, 2,3, =) is called a complete partially ordered
b-metric space (c.p.0.b-m.s.).

Definition 4 ([6]). Let (&, =) beapartially ordered set and let ¢, B : S — & be two mappings. Then:

(1)
(2)

(3)
4)

(5)

(6)

(7)

B is called a monotone non-decreasing, if B(0) = B(&) forall §,¢ € S with6 < {;

An element 8 € & is called a coincidence (common fixed) point of ¢ and B, if €0 = B0
(¢0 =30 =0);

¢ and R are called commuting, if £ B0 = B0, forall 0 € &;

¢ and B are called compatible, if any sequence {6, } with nl_ig_loo 0, = nETwQBn =1,

for u € & then nngp(%KGn,K%Gn) =0;

A pair of self maps (¢, RB) is called weakly compatible, if £ BO = B£6, when B = ¢80 for
some 6 € &;
3B is called a monotone £-non-decreasing, if

0 = ¢¢ implies B0 =X B¢, forany 6,¢ € G;

A non-empty set & is called well ordered set, if very two elements of it are comparable,
ie,0 X¢or¢ =206, forf,i 6.

Definition 5 ([6]). Let (S, 2, <) be a partially ordered set, and let B : & x & — & and
¢ : & — & be two mappings. Then:

(1)

(2)

(3)
(4)
(5)

B has the mixed ¢-monotone property, if & is a non-decreasing ¢-monotone in its first
argument and is a non-increasing £-monotone in its second argument, that is forany 6,¢ € &

61,0, € S, ¢61 = €0, implies B(01,§) < B(62,8), and
G1,60 € X, €51 X €8y implies B(0,81) = B(6,82).

Suppose, if ¢ is an identity mapping then B is said to have the mixed monotone property.
Anelement (0,&) € 6 x & is called a coupled coincidence point of B and ¢, if %B(0,¢) = £6
and % (&,0) = ¢¢. Note that if £ is an identity mapping, then (0, ) is said to be a coupled
fixed point of %B.

Element 6 € G is called a common fixed point of B and ¢, if %(6,0) = £6 = 6.

B and ¢ are commutative, if for all 0, € &, B(£0,£C) = (B0, BE).

B and ¢ are said to be compatible, if

lim p(f(@(Qn,gn)),%(KGH, ?/p‘:n)) =0

n—+oo

and
lim 72(£(B(Gn, 0n)), B(£Gn, €0)) =0,

n— 400
whenever {0, } and {&,} are any two sequences in & such that

lim B (64, En) = lim £6, =0

n——+00

and
i B (En,6n) = lim £8n =,

n——+o0o

forall§,¢ € 6.
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The following lemma is very useful in proving the convergence of a sequence in
b-metric spaces.

Lemma 1 ([6]). Let (S, 2, 3, =) be a b-metric space with 5 > 1, and suppose that {6, } and {&, }
are b-convergent to 0 and ¢, respectively. Then

1 . . 2
= < < <
272(6,8) < lim infz(6y,8n) < lim sup 2(6u,Gn) < 3772(6,8).

In particular, if 0 = ¢, then Llrf 72(04,En) = 0. Moreover, for each T € X, we have
n ]

1
- < I i < li < .
d/2(9, T) < nng inf 2(0,,7) < ngrroo sup 2(0,,T) < 32(0,T)
Throughout the rest of this manuscript we use the following altering distance functions.

® = {§ : ¢ is a continuous, non-decreasing self mapping on [0, +o) such that

$(e) = 0if and only if ¢ = 0}.

(i) ¥ = {¢: ¢ is a lower semi-continuous self mapping on [0, +c0) such that §(¢) = 0 if
and only if e = 0}.

(iii) © = {Q: Qis a self mapping on [0, +-c0) such that Q(e) = 0 if and only if ¢ = 0}.
Next, we introduce the concept of generalized weak contraction involving the altering

distance functions ¢ € ®, € ¥ and Q € O for a self mapping % on & in a c.p.0.b-m.s.

()

$(32(BO, Bg)) < §(&(0,6)) —P(&(0,¢)) + AQ(F (6,¢)), €))
forany 6,¢ € G with 8 < ¢and A > 0, where

72(c, Bg)[1 + 2(0,%0)] 2(0,%0) r(c,Bs) (0, B¢) + r(c, BI)

(T S ] (s B o
7(0,6)}
and
F(0,¢) = min{ (0, B9), 22(¢, Bg), 2(c, B9), 2(6, B¢) }. ®)

The results obtained in this work generalize and extend the results in [4,5] and sev-
eral comparable results in the literature. Furthermore, some variations of the results
of [16,21,22,25,26] can be seen in this paper. We refer the reader to [6,17,24] for the basic
definitions and the results which are necessary for understanding the present work.

2. Main Results

Now, we formulate and prove the theorem for the existence of a fixed point of the
generalized weak contraction involving the altering distance functions in a c.p.o.b-m.s.

Theorem 1. Let (G, 2,4, =) bec.p.o.b-m.s. with 5 > 1, and R is a continuous and non-decreasing
self mapping on & such that it satisfies condition (1). If there exists 8y € & such that 6y = FBb,
then & has a fixed point in &.

Proof. If %6y = 0y, for 6y € & then the result is proved. Otherwise, 8y < %6 so
then construct a sequence {6,} by 0,1 = %0, for alln € N. As B is an increasing
mapping, then

60'<<93’60:91f"'jgnjgggnzewrlf“'- (4)
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From (4), the result is also trivial, if 0, = 6,41 for certain ny € N. Suppose not for all
n > 1then 6, >~ 6, _1,(n > 1) and from condition (1), we have

P(72(0n, 0n41)) = P(72(BOu—1, BO)) < P(372(BOu—1,B01)) 5)
<9

(&(01-1,01)) — P(&(0n-1,0n)) + AQF (01, 0111)),
where
72(0n, <%911)[1 + 72(8-1, g’jen—l)] 20,1, B0,_1) 72(0n, BOy)

1_’_72(91171/97’1) ’ 1 +72(9n71/9n)

72041, %B0,) + 72(0n, B0, 1)
24 /ﬂ(ei’lfl/ 971)} (6)

0,_1,0,) + n(0,,0
S max{ﬂ(enlen-‘rl)/ﬂ( n-l 7’!) 5 p( u n+1)/7-7(9n—1/9n)}

< max{2(0y,0,11), 2(0,,1,01)}

&(0,_1,0,) =max{

7

and

F (0y—1,6n) = min{ (0,1, BOy_1), 72(0n, BOy), 72(60, BOy_1), 2(6—1, BOy) }

= min{p(Qn,l, 91’1)/ ﬂ(gn/ 9n+1)/ /—?(Gn/ 9}’1)/ ﬂ(gnfll 9n+1)} (7)
=0.

Therefore from Equations (5)—(7), we obtained that
1
72(0n,0,11) = 2(BO, 1, BOn) < 3%(9,1,1,6,1). (8)

Assume that for some n > 1, max{2(0y,6,:1), 2(6,_1,04)} = 2(04,0,11), then from
Equation (8) we obtain

| =

ﬂ(en/ 9n+1) < *ﬂ(en/ 9n+1)/ )

which is a contradiction. So, max{2(0y,0,:1), 2(0,-1,0:)} = 2(6,_1,60,),(n > 1). Thus,
from (8), we have

—_

72(971/ 9n+l) < 379(97171/ Gn)/ (10)

where 0 < % < 1. By the results of [12], we conclude that {6, } is a Cauchy sequence in &.
Therefore, 6, =+ « € & for some @« € & by completeness of G .
Moreover, since % is continuous, we obtain

Be =RA( lim 0,) = lim A6, = hm L Opp1 = (11)

n——+o0 n——+oo
So, @ € G is a fixed point of . [

Now we have the following result, assuming some condition on a space &.

Theorem 2. If in Theorem 1 we replace the assumption about the continuity of the mapping %
with the following condition:

a sequence {0y } in & is non-decreasing with 6,, — « € & then 6, < «,(n > 0), (12)
that is, @ = sup 6y,

then the mapping RB has a fixed point in &.

Proof. As in proof of Theorem 1, we conclude that there exists a non-decreasing Cauchy
sequence {6,} C & such that 6, — « € &. By condition (12), we obtain that 6, < «,
forall n,ie., ¢ = sup6y,.
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Next, to show that & has a fixed point «, let B« # «, then
% (0, ) = max{p(@,%@) 1+ 72(6n, %B6,)] , 720y, B0,) n(a, Ba) ,
1+ 2(04, ) 1+ 2(04, ) (13)
0., Ba)+ , B0
72( - @)2472(@ n)/ﬂ(gnrﬁ/)}
and
F (0y,a) = min{ (0, B6,), (e, Be), n(a, Bby), 204, Ba)}. (14)
In Equations (13) and (14) by taking n — 4-c0, we obtain that
. - r(e, Ba) |
nl_1>r_~r_loo &0y, 2) = max{ (e, Ba),0, > ,0} = n(e, Ba) (15)
and
ngrfmj (6n, @) = min{0, #(w, Ba)} = 0. (16)
As 0, < @, (n > 0), then from (1) we have
B2(0u11, B ) = Pl(B0n, B ) -
< P(372(BOn, B) < P(&(0n,2)) — P(& (0, 2)) + AQF (60, @)).
By letting n — 400 in (17), we obtain
P(n(a, Ba)) < P(r(e, Ba)) —P(r(e, Be)) < §(r(e, Ba)), (18)

which is a contradiction in (18). Hence, $¢ = «. O

Theorem 3. The mapping & in Theorems 1 and 2 has a unique fixed point, if every two elements

of & are comparable.

Proof. Assume that 0*,¢* € & are the fixed points of % with 6* # ¢*, then from

Equation (1) we have

Ba (B0, B6")) < §sp(30°, BC")) )
< P(&(0%,6")) —P(&(0",¢")) + AQ(F (07,67)),
where
. 72(¢*, B¢ [L + n (0%, 80%)] r(0*, BO*) n(¢*, Bg")
FO ) = mad T e T a@,e)
0*’@ * *,@9* . .
7-7( 9 );ﬂ(g ),7.?(6 .C )}
_ 2(¢", 6" )1+ 2(0%,6")] 2(0%,6") ~(c",¢")
T ) Trale) (20)
7-7(9 s )2‘:72(9 ,0 ),72(9*,(5*)}
— max{0,0, @ 2(6%,¢%)}
:73(9*/(;*)
and
F(0%,6") = min{ 2 (0", BO"), 2(¢*, B*), (", BO), (07, Bg")} =0.  (21)
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From (19), we obtain

—_

r(60°,¢") = n(BO", BG") < ~&(07,¢7) < &(0",¢7) = »(6%,¢7), (22)

which is a contradiction to 8* # ¢*. Thus, 8* = ¢*. Hence, the mapping % has a unique
fixed pointin &. O

Corollary 1. The same conclusions will be achieved as from Theorems 1-3 by letting A = 0 in
condition (1).

Corollary 2. In Corollary 1, by replacing ¢(7) = n and §(r) = (1 — £)7, then one can obtain
the same conclusions as in Theorems 1-3 with the following reduced contraction condition

725, B)[1+ 2(0,%0)] 2(0,89) r(s, Bg)
1+7-7(6/€) ’ 1+7-7(6/€) ’ (23)

p(e,@g);p(grge),ﬂ(e,g)}.

72(AB0,%Bg) S? max{

Definition 6. A self mapping % over & is a generalized contraction with respect to a mapping
¢ : 6 — G, if it satisfies the following condition:

P(s72(B6, Bg)) < p(&(0,6)) — P(&(0,6)) + AQ(F(0,6)), (24)
where
54(0,¢) =max{ 2% ??E(;f;g'%”' 72(0”:?/ f’j)( ;9(,2)%)’ -
/2(59/939);/?(59%9),ﬂ(ﬂ;lfg)}
and
F¢(0,¢) = min{2(£0,B0), (¢, B¢), n(¢c, %0), n(£0,Bg)}, (26)

forall0,¢ € Gwith£0 < ¢cand p € &, P € Yand Q € O.

Theorem 4. Suppose that (S, z2, 3, <) is a c.p.0.b-m.s. Let B and ¢ be continuous self mappings
defined over &. If the mappings 9B and ¢ satisfies the condition (24) such that

(i) A is a monotone £-non-decreasing;
(ii) BS C ¢S and B, ¢ are compatible;
(iii) £6y = B0y for certain 6y € S;

then 3B and ¢ have a coincidence point in &.

Proof. There exist two sequences {6, } and {g, } in & by Theorem 2.2 of [14] such that
Gn = BOy = 0,41,Yn >0, (27)

for which
002601 =X - 200, 20,41 -0 (28)

From [14], we have to claim that
ﬂ(Gn/ €n+1) S )L/—?(anlr Gn); (7’1 Z 1)/ (29)

where A = %, 3 > 1. Therefore, from Equations (24), (27) and (28), we obtain that

¢(s72(BOn, BO,11)) (30)
< P(Ep(0n,0n41)) — P(Er(0n,0n41)) + AQ(F¢ (00,00 41)),

P(372(6n,Gni1)) =
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where

£0n11, BOni1) (L + 72(£0n, BOn)|
14+ 2(£6,,60,41) ’
2600, BO) 72(0011, BOus1) 2(£0n, BOui1) + 72(¢0y11, BO)
1+ 2(¢0,, 60,41 ’ 25 ’
72(€0n,£0n11) }
2(6n Gni) 1+ 2(6n-1,6n)] 2(6n-1,61) 2(Gn Gn11) (31
1+ 2(6n-1,6n) ' 1+ 2(¢n-1,6n) ’

_1, + /
ﬂ(gn 1 gnJr;)j /.?(Gn gn);/—?(gn—llgn)}

_1, + ’
2(C1,Cn) : 7(Gn f;n+1),p(gn_1,gn)}

€ (0, 0,1) =max{Z (

= max{

< max{2(¢n, Gn+1),
< max{p(gn_1, (;n)/ ﬂ(gn, €n+1)}
and

‘G/Tf(gi’l/ 9n+1) = mln{p(f()n, '%971)/ ﬂ(fng,l, %9n+1)/ ﬁ(59n+1/ '%97’1)/ 73({971/ '%971+1)}
= min{2(6n—1,6n), 2(6n,Gnt1), 2(6n,6n), 2(6n—1,6nv1) } (32)
=0.
Thus, from Equations (30)—(32), it follows that

¢(372(6n,6nr1)) <P(max{z2(cn-1,6n), 2(Gn,Gn+1)})

8 33
— p(max{2(cn-1,6n), 2(6n, Gny1)})- >

Suppose 0 < 2(¢n-1,6n) < 2(Gn, Gns1) for some n, then (33) implies that

P(372(6n,6n11)) < @(2(6n 6nv1)) — P(2(6n,Gnr1)) < P(2(6n,Gnr1)),

or equivalently
'jf-?(gi’l/ Qn+1) S 7—7(911/ g?’l+1)/

which is a contradiction. Hence, Equation (33) becomes

372(6n,Gnt1) < 2(6n—1,6n)- (34)

Therefore, A = % from (29). By Lemma 3.1 of [19], and further from Equation (29),
we obtain

lim %9, = 1_1)rJrr1 £0y41 =4, u €6.
n 0

n—+00

Furthermore, from condition (2), we have

lim 72(£(B0,), B(£6,)) =0,

n—+oo

and moreover, the continuity of % and ¢ suggests that
lim #(%6,) =¢u, and nglrw%(fﬂn) = Byu.

n—+o00

Therefore,

L o(Bp, ) < p(Bp, BEO)) + 3(B(E0),€(B6,)) + 3p(¢(B6), Cp). (39

So by letting n — +o0 in (35), we obtain that 2 (%v, £v) = 0, which implies that v is a
coincidence point for the mappings % and 7 in 6. [



Mathematics 2023, 11, 2580

8of 19

The following is a result obtained from Theorem 4 by relaxing the continuity property
of  and & .

Theorem 5. Suppose that the following conditions hold in Theorem 4:

A sequence {£6,} C & is a non-decreasing such that £6, — £0 € ¢S;
S C G isclosed;

0, X720, foralln € N;

€0 <¢(¢0);

0y = B for some Oy € S.

If % and ¢ are the weakly compatible mappings, then B and ¢ have a coincidence point.
Furthermore, if 9B and ¢ commute at their coincidence points, then B and ¢ have a common fixed
point in &.

Gk L=

Proof. From Theorem 4, there exists a Cauchy sequence {¢,} = {%6,} = {£0,11} in &.
Thus, from the hypothesis, we have

lim 6, = 1_1>r£1 0y = fory € 6.
n o]

n——+o0

Therefore, 6, < ¢u,Vn. Now to claim that (%,¢) have a coincidence point .
From (24), we have

P(372(BOn, BO)) < $(E¢(0n,0)) — P(E¢(6n,0)) + AQ(F2(61,06)), (36)

where

(¢, BI)L+ 2(£0,, BO)] 2(£01,B6,) 2(E1, Bp)
1+ 2(£6,,€1) "1+ a(l6n,tn)

0n, Bu) + n(fu, 50
7-7( n .u) 7-7( H n)’ﬂ(fgnlf‘u)}

23
d(Zyu, Bu)
)/0/ 23 /O}

& (0n, ) = max{ 7

— max{z(Zu, Bu
= n(fu, Bu) asn — +oo,
and

F¢(0n, 1) = min{72(£6n, BO), 2(C 1, B1t), 72(E1t, BOn), 72(£6n, Bpu) }
— min{0, z2(¢p, Bu),0, 2(€p, Bu)}
=0asn — +oo.

Letting n — 400 in (36), we obtain

$(s lim 72(B0n, BY)) < §(2(¢n, Bu)) — P(2(¢p, Bu)) < §(2(¢n, Bu)).  (37)

n—+o0

Furthermore, from the property of ¢, we obtain

1
lim 72(B0n, B0) < — (L1, Bp). (38)

n—-+oo

Furthermore, the triangular inequality of 7 implies that

1
;ﬂ(fﬂrggﬂ) < n(Cu, BOn) + 72(B0n, Bu). (39)
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(s*

&r(0,6,0,0) =max{

If u # By, then (38) and (39) lead to a contradiction. Therefore, £y = FBu. Assume
that £y = By = p, then Bp = B(y) = ¢(Bu) = €p. Since £y < £(¢p) = £p, then by
Equation (36) with £y = By and £p = %Bp, we have

P(s72(Bp, Bp)) < §(Ee (1 0)) = (8¢ (1, 0)) < P(2(Bp, Bp)), (40)
or equivalently,
372(Bu, Bp) < rn(Bu, %p),
which shows a contradiction, if By # Bp. Therefore, By = Bp = p which suggests that
ABu = ¢p = p. This completes the result. [

Definition 7. A mapping % : & x & — & is a generalized (¢, |)-contractive mapping over a
b-metric space & with respect to a self mapping ¢ on &, if it satisfies the following condition:

7(B(0,6), B(0,0))) < $(&(6,6,0,0)) — P(&(6,6,0,0)) + AQF(6,¢,0,0)), (41)

forall 0,¢,0,0 € & such that £0 < foand £¢ = o,k >2,3>1,§cd,Ppec¥, Qe
and where

7(20,%B(0,0))[1+ n(0,%(0,¢)] p(£6,%B(6,¢) n(£o,B(0,0))

1+ 2(78,20) ’ 1+ (26, 20) ' (42)
72(¢0,%(0,0)) + 2(0,B(6,¢)
5 ,2(¢6,20)}

and

F¢(0,6,0,0) = min{2(£0,%B(0,5), 7(C0, B(0,0)), 7(€0, B(0,5), 2(£6,B(0,0))}. (43)

Theorem 6. Let the mapping B : & x & — G be a generalized ($, {)-contractive mapping with
respect to a self mapping ¢ on c.p.0.b-m.s. &. Assume that the mappings B and ¢ are continuous,
B has mixed ¢-monotone property and commutes with ¢. If for some (6y,60) € & x & with
0y = B(00,60), €60 = B(go,00) and B(S x &) C £(S), then the mappings B and ¢ have a
coupled coincidence point in &.

Proof. There exist two sequences {6, } and {¢,} in & from Theorem 2.2 of [14] such that
0p11=B(0n,6n), €Cni1= B(Gn,0y), foralln >0,

where the sequence {6, } is non-decreasing and {#¢, } is non-increasing in &. Suppose
0 =04,6=0¢n0=0,11,0 =Gpt1 in (41), then Equation (41) becomes

B 22(£011,€0142)) =5 2(B (O, 61), B (Bus1, 6011))
< 43( (en/ Cns 9n+1/ €n+1)) lp(%f(en’ g”’9”+1’g”+1)) (44)
+ AQ(!/f(Q?l/ Cn, 9n+1r gn+1))
where

&¢(On, 6n,On11,6n1) < max{z2(£0n, €0,41), 2(€0n4+1,60n12)}
and

Fe (00,6 Ont1,Gnp1) = min{p(f@n, B(On,6n))s 2(€0n11, B(0ni1,6n41)),

ﬂ(l’ﬂeﬂ/ ‘%<6n+l/ g?’l+1))/ ﬂ(f9n+1/ B (911/ gi’l))}
=0.
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Therefore from the Equation (44), we obtain

43(5](7—7(591%1/ £0,12)) ng)(max{;z(f@n, £0511), 2(€0n41,60n12)})

. (45)

p(max{z2(£6n, £041), 72(£0n11,0n12)})-

Similarly, by taking 6 = ¢4, ¢ = 04,0 = Gy41,0 = 0,41 in (41), we arrive at
$(5 2(¢6n 11, Cont2)) <P(max{z(£6u, £6ui1), 2(£6n11,€6nr2)}) (46)

P(max{2(£6n, £6ns1), 2(£Gns1,€Gns2)}).-

As by the result of max{¢(z1), P(z2)} = p{max{e1, @2}} for @1, @, € [0, +00), the
Equations (45) and (46) in turn imply that

J’(dkxn) <p(max{z(£6n,£0,11), 72(€0441,60n42), 2(€Gn, €6ns1), 2(€Gni1,C6ni2) })

) 47)
- lp(max{ﬂ(feﬂ/ f9n+1), p(f@n_H, £9H+2)/ ﬁ(fgﬂl fgn-i—l)/ p(fgn-i-l/ I’ﬂgn+2) })
where
Kn = max{2(£0,11,60n12), 2(€Gn11,€Gn12) }- (48)
Notate

Z‘i’l = max{p(l/ﬂgﬂr I/ﬂgnJrl)/ ﬂ(f9n+1/ f9n+2), ﬁ(’/ﬂgﬂ/ fgnJrl)/ ﬂ(fgnJrlr I/ﬂGYH-Z) }/ (49)

then from Equations (45)-(48), we obtain
dkKn < X, (50)

Next to show that
Ko < A1, (> 1) (51)
where A = j—k
It is evident that sk, < «,,, if &,, = x,, from (50). Therefore, x,, = 0 as s > 1 and hence

(51) holds. Furthermore, if ¥, = max{2(£6,,¢0,:1), 2(€¢n, €Gni1)}, i€, Ly = ;1 then
(50) follows (51). Therefore, we obtain x;,, < Ak from (50). Hence, we obtain

2(€0n41,60,12) < A'kg and 2(£Gn41,Gn12) < Ao, (52)

and then from Lemma 3.1. of [19], it is clear that {¢6,} and {#¢,} in & are Cauchy
sequences. Therefore, by continuous of the mappings % and ¢, we conclude that mappings
% and ¢ have a coupled coincidence pointin 6. O

Corollary 3. Suppose that a continuous mapping B : & x & — & has the property of mixed
monotone over the c.p.o.b-m.s. (&, 2, =). If 6y = RB(6o,60) and ¢o = B(go,00), for certain
(60,60) € & x S, then S has a coupled fixed point in & with the following contraction conditions:

(i)

(" n(B(6,6), B(0,0))) < §(&(6,¢,0,0)) — §((6,¢,0,0)), (53)
(ii)

P(B0,6)B(0,0) < 85:0,6,00) ~ £ B(E0,c00), G
where

72(0,%(0,0))[1+ 2(0,%(0,6)] ~(6,B(0,¢) (0, Bo,0))
1+ 2(0,0) / 1+ 12(6,0) '

/—?(Gfgg(Qro'))zj ﬂ(Q'%(erg),ﬂ(el Q)}

&r(0,¢,0,0) =max{
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and
F¢(0,6) = min{ (6, B(0,¢), »(0,%(0,0)), (0, B(0,¢), ~(6,B(0,0))},
forall0,¢,0,0 € Swithd X oand¢ =0, k>2,3>1,dc dandp € ¥.

Theorem 7. If in Theorem 6, (B (7, #*), B(#*, 1)) is comparable to (B(6,¢), B(g,0)) and
(B(#,¢), B(e, k), forall (6,6),(#£,¢) € & x & and some (7*,4*) € & x &, then the
mappings 9B and ¢ have a unique coupled common fixed point in &.

Proof. From Theorem 6, the mappings % and ¢ have a coupled coincidence point in &.

Assume that two coupled coincidence points (6,¢) and (%, ¢) for &, £ exist in &. Then

we have to show that #60 = ## and £¢ = ¢¢. From the hypotheses for (/*,%4*) € & x G,

(B(1*, "), B(#*, 7)) is comparable to (%(0,5), B(¢,0)) and (B (%, <), B (¢, #)).
Suppose

(3(6,6),5(,0)) < (B(,,A°), B(A", 1)) and
(B(£,0), B(e, ) 2 (B(L*7#"), B(A", 17))-
Let /*) = /% and 4% = /4*; then, there is a point (/*{,£%1) € & x & such that
C7% = B(s70 A", CA L = B(A 7%), (n>1).
By induction, there exist two sequences {# s *,}, {¢%4",} in & with
67 i = B W), Eh st = BA 1), (12 0).

Furthermore, by letting 6y = 6, ¢o = ¢ and 29 = %, ¢o = ¢, there will be other
sequences {£0y,}, {¢cn} and {¢£,}, {¢¢n} in G such that

£60, — B(0,¢), tcn — B(c,0), £hn — B(E,¢), Con— B(e, ) (n>1).  (55)

Thus, by induction, we obtain

(€600, 66n) < (1%, €% n), (n>0). (56)
From (41)
F(n(£0,617111)) < P(5* (€0, 7%,11)) = B8 2(B(60,6), B4, #*0))) (57)
< P(Er(0,6,07 0 7% n) —(Er(0,6, 771 " 0)) + NUF£(0,6,.17 5, %7 n)),
where
s 2L B(L " 7)) [L+ 72(£0, B(0,6)]
F,(0 V) =
If( 1Crd s 1’1) max{ 1+7—’1(b09/fgl.*n) ’
p(f@,gg(e, Q) ﬂ(l.*nf‘%(az.*wﬁ’*n))
1 +7—7(£6r<1'*n) ’
0, B(7* % ) + >, B0, .
7-7( (oz n le)j ﬂ(oz n ( g)//—?(ferfal n)}
— max{0,0, 777(5;9;‘1 w a(0,65%))
=n(0,¢4",)
and
Fe(0,6, 17, %% n) = min{n(£60,%(0,¢), n(¢ 1%, B 1%, %"n)), n(€1",, B(6,¢),
P(00,B(7" 0 A" )}

=0.
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Hence, from Equation (57), we obtain

P(r(€0,¢7 1)) < P(n(€0,£17,)) = d(2(£6,£57,))-
Furthermore, using a similar manner we obtain

P(2(06, 04" n41)) < P(n(£6, 47 n)) — §(2(£6, 047 n)).

From Equations (58) and (59), we have

(max{7(£0,¢7%,), (€6, 6% n)})
(max{z(¢0,¢7",), n(£g,€%"n)})

p(max{2(£0,¢7" 1), 2(£6, /" 111)}) <
-9

< ¢p(max{z(£0,¢7",), 2(€6, %7 n)}).

Furthermore, the property of ¢, Equation (60) implies that

max{z(£0,¢7" 1), 2(€¢, €%  ni1)} <max{n(£0,£7",), n(€c, €/ )}

(58)

(59)

(60)

Therefore, max{2(¢6,¢ s*,), 2(£c,€%%,)} is a decreasing sequence of positive reals

and bounded below. Therefore, we have

lim max{2(¢6,¢s%,), n(¢c,¢4 )} =2, X > 0.

n—-+o0

Letting n — 400 in Equation (60), we obtain

$(T) < $(T) - (),

(61)

(62)

and also by the property of ¢, we obtained that /(') = 0 and hence, & = 0. Therefore

Equation (61) follows that

ngrfwmax{p(f(),ﬂz w),2(Cc, ¢k )} =0,

which implies that

lim 2(£6,¢7%,) =0and nngp(fg,f)% n) =0.

n—-+oo

Again by similar process, we obtain that

lim z(¢%,¢7%,) =0and hm n(le, ¢4 y) =0.

n——+oo —+0o0

(63)

(64)

Therefore from Equations (63) and (64), we have 76 = £#£ and £¢ = £¢. Since
0 = %B(6,¢) and ¢¢ = HB(g,0), and there is the commutativity property of % and ¢,

we have
£(£0) =¢(RB(0,6)) = B(¢0,6¢) and £(£¢) = ¢(B(¢,0)) = B(¢g,¢0).
Suppose £0 = 7 and £¢ = /iy, then from Equation (65), we obtain
¢(2y) = B4y, fy) and (Vi) = B(Ay, 13),

which shows that %, # have a coupled coincidence point (7, %,;). Thus, (7 ;
and #(%4;) = ¢c; hence, (/) = 7 and £(%4,;) = 7. Therefore, from (66), (7,
coupled common fixed point of % and 7.

) =
ﬁ;)

(65)

(66)

If ( L ﬁ;) is another coupled common fixed point of % and 7. Then, ;4 = 774 =
B(1gtg)and hy =1y = B(ly 13)- As (14 %) is a coupled common fixed point of
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B anclf then*foz'* :* A :*J'; a.nd fﬁ; = ¢ = %y Therefore, oz';z = f‘j; =Cliy =1y
and %y = £ /iy = €7y = 7y. This completes the proof. [

Theorem 8. If £8y < £go or £y = £go, then a unique common fixed point for the mappings RB
and ¢ exists in & of Theorem 7.

Proof. We have to claim that 6 = ¢ for a unique coupled common fixed point(6, ¢) of the
mappings % and ¢ in . By induction, we obtain that £6,, < ¢y, (n > 0) when £6y < £go.
Therefore, by following Lemma 2 of [20], we obtain that

B 22(6,0) = (3 (0,6) < Tim_ supd(s* 281, 6i1))
= HETOO sup $(4*2(B (6, 6n), B(Gn, 1))

nl_lg_‘oo sup ¢(&¢(0n, Gn,Gn, On)) — ngrfwmflp(%f(enrQnr(;nrgn))

IN

(67)
+A HETW sup Q(F(0n, G, Gn, On))

< 43(7-7(6/ Q)) - ngTwinf¢<%f(6nl CnsCny 9n)>
<¢(2(8,6)),

which is a contradiction form of Equation (67). Therefore, § = ¢.
A similar proof can also see the same conclusion if 6y = £¢o. O

Remark 1. By following [4], the condition

P(2(#(6,¢),%(0,6))) < p(max{7(¢6,20), n(¢¢,£c)}) — p(max{2(£6,0), 2(¢c,£¢)})

is equivalent to

72(B(0,¢),B(0,6)) < p(max{z(£0,£q), 2(¢5,£6)}),

when 3 = 1 and where ¢ is a continuous self mapping on [0, +o00) with ¢(@) < «, forall @ > 0
and ¢(«) = 0ifand only if & = 0 and, § € &, € ¥ . Hence, the results obtained in this paper
are generalizing and extending the results of [22] and many comparable results in the literature.

We illustrate some examples based on the metric as follows.

Example 1. Let & = {x3,x), X3, X4, X5, X4}, and define a metric 2 : & x & — & by

72(0,6) = 2(c,0) =0, if 0 = g = x1,X2,X3,X4, X5, X6 and 0 = ¢;
72(0,6) = r(g,0) =3, if 0 = ¢ = x1,Xx2,X3,X4, x5 and 6 # g;
7(0,¢) = (g, 0) =12, if 0 = x1,x2,x3,x4 and ¢ = xg;

72(0,¢) = 7(g,0) =20, if 0 = x5 and ¢ = xg, with usual order < .

If B is a self mapping on & with Bx; = Bxy) = Bxz = Bxy = Bxs = 1, Bxg = 2,
then & has a fixed point in & with the distance functions ¢(e) = 5 and P(«) = %, for all
@ € [0,+00).

Proof. For s =2, (&, 2, <) isac.p.o.b-ms. If < ¢ for some 6,¢ € S, then we have the
cases below.
Case (a). If 0, ¢ € {x71,x2,x3,%4, %5} then 2(AB0,B¢) = n(x1,x1) = 0. Hence,

¢(272(B6,Bc)) =0 < ¢p(&(0,¢)) — P(&(6,¢)).



Mathematics 2023, 11, 2580 14 of 19

Case (b). If 0 € {x1,x2,x3,x4,%5} and ¢ = xg, then n(RBO,%Bg) = p(x1,x) = 3,
&(x5,x5) =20 and &(6,x5) = 12, for 6 € {x1,x2,x3,x4}. Therefore,

pn(0,50) < “0 _ s0,0) — i(5(6,0))

Hence all assumptions of Corollary 1 are satisfied; hence % has a fixed pointin &. [

Example 2. Let us define a metric 2 on & = {0, 1, %, %, }1,. .. %, ...} with the usual order < by

0,if6 =g,

1, if6 # ¢ € {0,1},

|0 —¢|, if6,¢ € {O,%,ﬁ n#Fmmn>1,m>1},
2, otherwise.

7—7(9/ Q) =

If B on & is a self mapping such that B0 = 0, BL = 1, (n > 1), then B has a fixed point

in & with the distance functions §(e) = @ and §(a) = *&, for all @ € [0, +0).

Proof. By definition, a metric 2 is discontinuous. Furthermore, for s = %, (6,12,<)isa
c.p.o.b-m.s. Now we will have the following cases for §,¢ € G with 6 < g:
Case (@).If 6 =0and ¢ = 1 (n > 0), then (B0, B¢) = 2(0, 13-) = & and &(0,¢) = 1,
&(0,¢) = {1,2}. Therefore,

§(2r@o.aq) < L —g(s0.0) - iz 0.0

Case(b).Ifezlandg— L form > n > 1, then

m ~n
1

1
72(B0, Bg) = ﬂ(mr @)

and &(6,¢) =>

I |-

1
- =2.
_or &(0,¢)
Therefore,

¢<152ﬁ<%9,%9>> < 539 = #(s0.0) - F(50.0)

As all assumptions of Corollary 1 are fulfilled, and hence 98 has a fixed pointin 6. O
Example 3. Let 22 be a metric on & = {I1|I1: [z1, 23] — |21, 22] is continuous} defined by

2, Ik) = sup {|Th () —Th(«)*},

@€ [Z],Zz]

forall T11,TT; € 6,0 < zy < zp such that 111 < Tl and zq < T1j(w) < Iy(w) < zp, where

@ € [z1,23]. A self mapping B on & defined by BI1 = %, I1 € & has a unique fixed point with
¢(i) = dand §(i) = &, forall i € [0, +o0].

Proof. Since min(I1;,IT;)(«) = min{I1;(«),I12(«)} is continuous and all conditions of

Corollary 1 are fulfilled for 4 = 2. Hence, we conclude that 0 € & is the unique fixed point
of . O
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3. Application

In this section, as an application of Theorem 3, we will discuss the existence of the
unique solution of a nonlinear quadratic integral equation (see [6]).
Let us consider the following nonlinear quadratic integral equation:

K1) =70+ [ kit @giox@)io [ ko) x@)i, @)
tel=1[01],A>0.

Let I be a set of all functions 3 : [0,00) — [0, ) such that the following conditions hold:

(i) Bisnon-decreasing and (B(t))7 < B(t1) for all g > 1.

(i) There exist ¢ € ® such that B(t) =t — ¢(t) forall t € [0,00).
For example, B1(t) = kt, where 0 < k < 1and By (t) = L arein T [6].
We will study Equation (68) under the following conditions:

(c1) gi:IxR—=R,(i=1,2), where g;(t,6) > 0 are continuous functions, and there exist
two functions & € L'(I) such that g;(t,0) < &(t), (i = 1,2);

(c2) £1(t,0) is a monotone non-decreasing in 6 and g»(t, ¢) is a monotone non-increasing
ingforalld,g e Randt € I;

(¢3) Y :I— Risa continuous function;

(cq) ki IxI—R,(i =1,2)are continuous in t € I for every w € I and measurable in
w € Iforallt € I such that

1
/ kit w)&i(w)dw < K,i = 1,2 and k;(t,60) > 0;
0

(c5) there exist constants 0 < L; < 1,(i = 1,2) and B € T such that for all §,¢ € R and
0=g,
18i(t,0) = &i(t,¢)| < Lip(6 —¢), (i =1,2);

there exist mq, my € C(I) such that

~—

(6
my(t) < y(t) + A/Ol ki(t,w)g1(w, m(w))dw /01 ko (t, w)ga(w, my(w))dw

1 1
< fy(t)+)\/0 kl(t,w)gl(w,mz(w))da)/o ka(t, w)ga(w, mi (w))dw

< my(t);

(c7) max{L1, LI}NIK? < 1

24q73 .
Let & = C(I), where I = [0,1] is the space of continuous functions with the metric

d =sup|0(t) —g(t)|, forall 6,¢ € C(I).

tel
Then, it is clear that the space can be equipped with a partial order given by
0,6 € C(I),0 <¢g < 0(t) <¢(t), forallt € 1.

Define a metric 2 for 4 > 1 by

7(8,6) = (d(6,6)7) = (StUII3 0(t) —¢(H))T = sup |0(t) = ¢(£)[?, forall §,¢ € C(I).

It is obvious that (&, 72) is a complete b-metric space with s = 27-1, Ref. [10].
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Furthermore, & x & = C(I) x C(I) is a partially ordered set with the following
order relation:

forall (6,¢),(p,0) €6 x6, (6,6) <(p,0) < O0<pand¢>o.
Furthermore, for all §,¢ € & and each t € I, max{6(t),¢(t)} are upper and lower

bounds of 0, ¢ in &. Thus, for every (6,¢), (p,0) € & x &, (max{6,p}, min{g,c}) € Ex &
is comparable to (0, ¢) and (p, o).

Theorem 9. The integral Equation (68) has a unique solution in C(I) under the hypotheses

(c1) = (e7)-
Proof. Define a mapping # : & x & — & by
B(0,c)(t) = —|—/\/ i(tw)g1(w,8(w dw/ ka(t,w)g2(w,¢(w))dw, forall t € 1.

Then & is well defined by the hypotheses. Next, we prove that % has the mixed
monotone property. Consider, for 8; < 6y and t € I

B(01,6)(t) — B(02,6)(t) = 7(t)
+/\/ ki (1 w) g1 (w, 61 (@ dw/ ko (1, ) ga(w, ¢ (w))dw
— (¢ A/ ki(t,w)g1(w, 02 (w dw/ ka(t, w)g2(w, ¢(w))dw

—A /0 k1 (£, @) (31 (w0, 01 (@) — 1@, B3())]dew /O K (£, @) ga(w, g (w))ds
0.

IN

Using a similar procedure, we can prove that %(6,61)(t) < %(0,62)(t),if ¢1 < ¢
and t € I. Hence, % has the mixed monotone property. Moreover, for (6,¢) < (p, ), that
is, 8 < pand ¢ > o, we have

26,0() - B, < I\ [ ki(w)g (@ 8@ [kt 0)lga(w,c(w)
— 2(w, ()l

2 [l @ga(@ ot@)de [ k(6w (00) - g1 p())del

< A/ it w)g1 (w, B(c dw/ kot @) 2w, (@) — g2(e, 0(w))|deo

+A /0 Kka(t, @) g2 (@, 0(w))deo /0 k1t @) [91(, 6()) — 81(w, p())|dew

< [ k@ @ [ k(o) Lpl(w) - o)

A [l wm@)ie [ k(@) plple) - 6(w)de.

Since the function f is non-decreasing and, 6 < p and ¢ > ¢, we have

Blo(w) = 0(w)) < B(sup [6(w) — p(w)]) = B(d(6,0))

tel

and

Blg(w) —o(w)) < B(sup |¢(w) — o(w)]) = Bd(g, 7).

tel
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Thus,

8(0,6(0)) ~ B(0,0) ()] < AK [kt ) Lol ) o

+/\1</01 k1 (£, w)LiB(d(p, 8))dw
< AK*max{Ly, L2} [B(d(p,0)) + B(d(g, 0))].

Therefore,

7(%(0,6), % (p,0)) = sup [B(6,6)(t) — B(p,0)(£)|"

tel
< {AK?max{Ly, L2} [B(d(p, 0)) + B(d(c,0))]}"
= ATK* max{L17, L7} [B(d(p, ) + B(d(c, 0))]",

and from the fact that (a +b)7 < 29-1(a9 + b7), for all a,b € (0,00) and g > 1, we have

7(B(6,¢), B(p,0)) <297 ATK* max{Ly7, Ly} [(B(d(p, 6)))T + (B(d(g,)))"]
< 207N max{L,7, Ly} [B(d (0, 0)) + B(d(g, 0))]
< 29M KX max{L,9, Ly} [B&s(6,¢,0,0)]
< 29ATK* T max {119, La7} &, (6, ¢,0,0) — (8¢ (8,6,0,0))]

1 .
< W%K(GIQ/PIU) - WI/J(%f(@/QIPI‘T))-
which implies that the mapping % satisfies the contrative condition (54) appearing in
Corollary 3.
Finally, let 711, m; be the functions appearing in assumption (ce); then, by (cs), we obtain

my < B(my,my) < B(my,my) < my.

Therefore from Theorem 7, % has a umque coupled fixed point (/*, 4%) € & x &.
Since my < my, then from Theorem 8, /* = %* which suggests that /* = ZB(s™, /7).
Therefore, /* € C(I) is the unique solution of Equation (68). [

4. Conclusions

In this work, we introduced generalized weak contractions involving the altering
distance functions in which conditions appear in the form of a fraction. The results obtained
in this paper are generalizing and extending the results of [22] and many comparable results
in the literature. Further, a few examples are given to justify the findings.

Recently, George et. al. [27] have introduced rectangular b-metric spaces. Furthermore,
Mitrovi¢ and Radenovi¢ [28] introduced b, (s)-metric space. It is an interesting opening
problem to study generalized weak contractions having the altering distance functions in
those spaces.

In conclusion, we provide an open question. Can we replace condition (1) with
a weaker condition

¢(2(T6,Tg)) < ¢(2(0,6)) — P(2(0,¢)) + AQ(E(6,))? (69)

Furthermore, the above results can be generalized and extended by introducing the
concept of wt-distance on a metric-type space [29], cone b-metric spaces over Banach
algebra [30] and (¢, p)-weak contractions [31].
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