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Abstract: This paper addresses blood pressure learning with blood 

transfer and determination of high or low blood pressure (BP) as 

per the boro receptors model. Norepinephrine (NE) is commonly 

practiced for septic shock because it raises blood pressure. Blood 

pressure is critical for ensuring that BP ratio is fluctuating for 

septic patients which are appropriately controlled. Thus, this 

paper analyzes an arterial blood pressure framework for patients 

based on the receiving NE infusion in real-time physiology. We 

considered data learning methodologies frequently to treat the 

physiological consequences of septic shock patients. We 

considered different physiological parameters to predict the NE 

infusion rate. Our experiments got the root mean square error for 

mean arterial blood pressure prediction.  

Index Terms— Mean arterial blood pressure (MAP), sepsis, least 

mean square, norepinephrine (NE), filter coefficient 

 

I. INTRODUCTION  

lood pressure is a very sensitive chemical liquid flow in 

vein of human body that always helps to find out various 

diseases as per health information. We have analyzed this 

blood pressure in medical processes to find out various health 

information through our model. Severe infections are generated 

by patient’s blood which are under fear of life. As we know, 

Sepsis-induced hypotension is treated with vasopressors such 

as epinephrine and norepinephrine (NE). NE is a useful 

vasopressor in the intensive care unit (ICU) for enhancing 

splanchnic tissue oxygen utilization [1]. To keep MAP levels as 

certain threshold, clinicians use their clinical judgment to adjust 

the pace of NE infusion. Patients with septic shock should have 

their MAP monitored constantly to ensure that the 65 mmHg 

criterion is met [2]. There should be regular reviews because 

NE's efficacy varies from patient to patient and with time [3,4]. 

Because of this, administering NE infusions is a time-

consuming task in the clinic. Morbidity and death could result 

from human mistakes and inaccuracies in modifications.  

To meet the needs of the medical community, a NE 

infusion rate-based MAP prediction system is in great demand. 

Because of this, an ICU data model that can reliably forecast 

MAP will be necessary for the development of such a system. 

Real-time adaptation to the changing physiology of a patient 

should be possible with these models. It is possible to forecast 

the future using a model based on physiological principles. 

Machine learning frameworks have an data (sometimes 

known as "black boxes") explain ability issue when used in 

clinical contexts [5]. We have developed a time-varying, 

physiologically-informed modeling approach to accurately 

 
 

forecast the mean arterial pressure in patients with sepsis who 

are receiving nephroephedrine (NE) infusions. 

Also, recent study [6] found that lowering blood pressure 

does not always mean restoring organ function. As a result, no 

reduction in mortality has been studied thus far. A machine 

learning model is used to better understand the NE response in 

septic patients and to create a methodology that is informed by 

physiology to forecast the MAP with more accuracy over the 

long run. 

Various modeling strategies have been used to study arterial 

blood pressure prediction management. The infinite impulse 

response (IIR) adaptive filter was implemented by Koivo [7] 

and [8]. Arnsparger [9] employed an IIR adaptive model-based 

adaptive control system to manage blood pressure. Bhuyan et 

al., [10,14] considered deep learning and feature selection 

approach with biological data sets. The autoregressive-moving-

average (ARMA) was then observed by researchers [11]. 

In recent research work, Su [12] and Li [13] developed 

recurrent neural networks to predict long-term blood pressure 

levels. As a result of this, neural networks require a large 

amount of training data to make accurate predictions. In the 

absence of appropriate data, these systems cannot be tailored to 

a single patient. Bhuyan et. al., developed the model for data 

extraction [24] and IoT based data analysis [25]. 

The baroreflex model was first proposed by Mukkamala [15], 

for analyzing blood pressure-related components working in the 

human body.  A data-driven framework is not included in this 

model, although it is general enough to accommodate MAP 

prediction. Thus, the foundation of our physiology-based 

proposed framework is an expansion of this idea. We 

considered another model related to baroreflex model which is 

shown in fig 1. 

We also used MAP model for Bororeflex. It's a black box 

model that doesn't take any specific physiological relationship 

into account, but the algorithm can accurately forecast the MAP 

value. As a result, it lacks a rational basis for explanation. In 

addition, because of its high processing cost, real-time 

implementation is difficult. While our method is more 

affordable and simpler to use than a fuzzy approaches, the 

connection it makes to a physiological model of NE in HR and 

PP may provide additional information. As a result, we evaluate 

the effectiveness of our approach against the alternatives. Our 

findings are also compared to autoregressive-moving-average 

with exogenous inputs (ARMAX) with an extension of the 

autoregressive-moving average (ARMA) model. 
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Fig. 1: Bororeflex with boro receptors model for blood pressure 

 

Remaining sections of this paper are arranged as follows. We 

explained the proposed framework of NE-MAP model in 

section II. The methodologies of the proposed model are 

elaborated in section III. The experiments are demonstrated as 

per model and methodologies in section IV. We concluded our 

paper in section V.  

 

II. FRAMEWORK OF PHYSIOLOGICAL NE-MAP 

MODEL FOR BLOOD PRESSURE 

For our model, we use the principles of physiology NE MAP 

model. Because each patient's physiology changes over time 

and is unique, we build a 2-level model of MAP. Future heart 

HR, PP, and total KR are predicted by the first layer using data 

from the previous layer and the previous NE. To keep up with 

the changing health status of the patient, these models 

constantly modify and retrain themselves. In the second layer, 

physiology is used to forecast future MAP based on expected 

HR, PP, and KR. We have explained various methodology 

behind our physiology-based MAP model, as well as the steps 

involved in preparing the data for MAP prediction. 

 

 
Fig 2: Various components of baroreceptor reflex for blood pressure 

 

The human body's fast response system to variations in blood 

pressure is called the baroreceptor reflex. Inhibitory effects are 

depicted in green, while excitatory effects are shown in red. We 

designed baroreceptor reflex for blood pressure as in fig. 2 with 

various components such as (a) Sensors, (b) Neural integration, 

(c) Effectors as follows. 

 

(a) Sensors: In the arteries of the upper body, pressure sensors 

are placed as:  

1. React to blood pressure-induced stretching 

2. There are fewer nerve impulses/sec in the Carotid 

sinus than there are in the rest of the body because 

blood pressure is higher (glossopharyngeal) 

3. Carotid sinus: Sensory nerve = cranial nerve IX 

(glossopharyngeal) 

4. Aortic arch: Sensory nerve = cranial nerve X (vagus) 

 

(b) Neural Integration: Centers used to lower blood pressure 

include: the brain's nucleus tractus solitarius, which receives 

sensory neurons, and the medulla oblongata, where 

measurements of blood pressure are compared to a 

predetermined value (the "set point"). Increases heart output by 

activating the cardiac accelerator nerve as: 

1. Uses the vagus nerve as a means of decreasing cardiac 

output. 

2. arterioles and veins are constricted by the 

vasoconstrictor centre, which employs spinal neurons. 

3. Flow resistance is increased when blood arteries are 

constricted (R) 

 

(c) Effectors:  

 

(i) Heart:  

(i) SA Node: regulates the heartbeat rate (HR) 

1. The vagus nerve slows the heart. 

2. Cardiac accelerator increases the rate of 

heartbeats 

(ii) Heart muscle:  

1. SV (stroke volume) is controlled by the heart 

muscle and the cardiac accelerator nerve. 

2. The cardiac muscle does not get any vagus fibres. 

(ii) Arteries and Veins system  

 

(d) Analysis of bood pressure 

1. When blood pressure is low, the heart's ability to pump 

blood will be increased, and the arterioles and veins 

that carry blood through the body will be constricting. 

(CO = HR X SV) (Here, CO is cardiac output) 

2. When blood pressure is high: Reflex decreases CO if 

pressure is high. 

3. Arterioles and veins dilate as a result of decreased 

reflex activity arterial blood pressure (iii) Reflex will 

bring your blood pressure back to normal. 

 

 

III. THEORETICAL ANALYSIS FOR PHYSIOLOGICAL 

MODEL 
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We considered various mathematical formulas to analyze the 

blood pressure using physiological model. We used Wind 

Kessel model [19] to include parameters that can be measured 

in most ICUs patient. Based on a physiological model, we can 

predict MAP using HR, PP, and KR. Starting with [20], we 

considered various methods as per the model and made 

relationships among different components as follows. 

We formulated the eq. (1) as 

 

   ��� = �� ∗ �	
�
�                              (1) 

 

Here, we considered Resist as a vascular resistance and CO as 

cardiac output. Each component of right-hand side of eq. 1 is 

defined again as eq 2 and 3 as follows.  

 

�� = 
� ∗ ��                                                      (2) 

 

Here, SV is stroke volume. Pulse pressure (PP) also influences 

stroke volume, as it varies depending on systolic (SBP) and 

diastolic blood pressure (DBP) with differences. This is how we 

can express the stroke volume: 

 

 


� = � ∗ �� = � ∗ (
�� − ���)                              (3) 

 

Where, k is a scalar coefficient. The eq. (1) is further derived 

using eq.(2) and (3) and got eq. (4) as follows  

 

��� = (
�� − ���) ∗  �� ∗ � ∗ �	
�
�                    (4) 

 

��� = � ∗ �	
�
� ��
�������� 

                                    (5) 

 

Ad determines the area of the arterial blood pressure (ABP) 

curve, Ps is the dicrotic pressure, and P0 is the downstream 

pressure arterial model.  

It is recommended by Chemla [21] that P0 be a small integer 

that changes slowly over time. The MAP can be stated by 

swapping (5) for (4). 

 

��� = (
�� − ���) × �� × ��
�������� 

                     (6) 

 = �� × �� × ��" 
 

Since the MAP may be calculated as the product of three 

different measurements, the eq. (6) is formulated as per 

measurements such as PP = pulse pressure; HR = heart rate; 

TAC = total artery compliance; and R = arterial resistance 

(KR0). P0 is an unknown parameter in (6) and measurement of 

the P0 is difficult in the current clinical setting. We can 

however, (6) using a linear model because the value is tiny and 

slowly varying. 

 

��� ≈ 
 × �� × �� × �� + %                            (7) 

 

where KR =
��

������, , s and c two factors for scaling factor and 

offset respectively which are determined by linear regression. 

We considered that each of these variables changes based on 

its previous values and on previous NE injection rates as well. 

As per present and previous PP, HR, KR, and NE values, we 

can therefore conclude that future values can be predicted. 

 

A. Least Mean Square (LMS) Model 

Based on the preprocessed data, we used above model and 

learn through PP, HR and KR components. We used a 2-stage 

procedure to discover the association among prior and present 

values. The association between each of the parameters and NE 

is specifically determined as follows:  

 

'()* = ∑ ,-()*'() − . − �* + ∑ /0
1
02"

1
-23 ()*4() − 5 − �*        

(8)        

 

Here, y[n] is formulated in as per above 3- items for time and 

the NE input is x[n] in that order. We use a normalized LMS 

approach to learning the coefficients on various time as αa[n] 

and βb[n]. The weights w[n] in this model are continuously 

updated as a result of the model learning and adapting to 

 

6()* = 6() − 1* + 89(:*
".""3<=(:*=>(:* ?()*                   (9) 

 

Here, w[n] is determined with the help of parameters αa[n] and 

βb[n] as below. The u[n] matrix is defined as eq. (10) as  

 

6()* = @,()*/()*A  = @,3()* … ,1()*/"()* … /1()*A  
?()* = @'()*4()*A = ('()* … '() − C*4()* … 4() − C** (10) 

 

From eq. (9), the value 0.001 is used to alleviate the system 

based on avoiding zero from denominator. As per above 

equation the error e[n] is determined as: 

 

       	()* = '()* − 6()*?D()*                               (11) 

 

B. Associative Learning with the Physiological components  

 The linear algebra is developed using various components (PP, 

HR, and KR) and MAP and formulated the eq. (12) as follows.  

 

���()* = 
()*(��()* × ��()* × ��()*) + %()*  (12) 

= @
()*%()*A. (��()* × ��()* × ��()*
1 * 

 

          

Here s[n] and c[n] are scale and offset coefficients respectively 

which is further defined as eq. (13).  

 

@
()*%()*A = ���(��()* ⊙ ��()* ⊙ ��()*
1 *F 

@
()*%()*A = ���()* G��()* ⊙ ��()*. ��()*
1 H

F
       (13) 

 

Where [·]† represents pseudo-inverse operation and ⊙  identify 

the entry wise product.  

 

C. Prediction of the Model 

The assumption is taken based on the relationship between 

past and current data of P time sample. It is therefore possible 
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to forecast future data using the training weights (a and b) from 

(8). To be more specific, we use computation to forecast the 

three future components of HR, PP, and KR. 

 

'() + I* = ∑ ,-
1
-23 ()*'() − .* + ∑ /0()*4() − 5*1

02"   (14) 

 

where y[n] is defined on above components and expected MAP 

is defined by  

 

���() + �* = 
()*(��() + �* × ��() + �* 
                                   × ��() + �*) + %()*                    (15) 

 

With the help of s[n] and c[n] from (13), eq. (15) is formulated.  

 

D.  Comparison methods  

Different feedback for filter coefficient are used such 

as coefficient for the exogenous input NE, and a coefficient for 

white noise. Modelling future MAP with this method involves 

filtering out the prior iteration of each component (past NE and 

MAP), then creating a stationary white noise process. However, 

this model just links future MAP to the NE, which is 

comparable to our model. Each future HP, PP, and KR in turn 

is linked with NE in our method before being connected to 

MAP in the present. 

We considered three alternative adaptive models for 

comparing to our approach such as ARMAX model [17], an IIR 

linear model [18], and least squares regression approach [4]. 

We used the IIR and ARMAX models as their time-series 

forecasting. Thus, the data in the ARMAX model is assumed to 

be 

 

���()* = ∑ JK���() − ,* + ∑ L0CM() −1
023

1
K23

5* … … . . + ∑ NOP() − %*1
O23                                           (16) 

 

where ϕa, θb and θc are different feedback for filter coefficients, 

the exogenous input NE, and coefficient for white noise ε 

respectively.  

 

Again, the IIR method is formulated as  

 

���() + �* = ∑ J-
1
-2" ���() − .* + ∑ L0CM() − 5*1

023             

(17) 

 

Based on our methodology, IIR filter model y[n] is used in both 

equations (17) and (8) to derive the MAP values. A normalized 

LMS method is used to solve this model, just like in (9). 

Assume that w[n] and u[n] are the weights in this case. We 

defined two vectors such as w[n] and the u[n] as follows. 

 

6()* = @∅()*L()*A = (J3…..RSL3….TS*  
?()* = (CM()*���()*]       
= (CM()* … CM() − C*���()* … ���() − C*       (18) 

 

 There are several similarities between the ARMAX and IIR 

versions. The MAP model uses this term to describe 

unpredictability. LMS is a common algorithm used in both the 

IIR model and our model.  

More information can be found in [4]. Despite its 

effectiveness, our previous method requires extensive 

computation and lacks clarity. We used black-box models with 

limited physiological explanation in all three comparisons. 

 

IV. EXPERIMENTS AND ITS ANALYSIS 

 

A. Data set 

To ensure that our procedure is accurate, we use two 

sources of patient data. The Research Data Export (RDE) 

functionality of Philips Intellivue monitors is used to gather 

data for the Intermountain Medical Center [16]. Once a minute, 

the NE is injected into the body. All of the heart's electrical 

activity is recorded and output at a steady frequency of 125 

hertz until the next cardiac cycle. We subsequently reduced the 

sampling rate to 5 Hz to speed up the calculation. 

Because 51 individuals had fewer than two hours of 

unbroken ABP signals or were physically moving, 82 of the 103 

patients' data was removed. Thirty-one more individuals are 

either unaware of NE or are taking several vasopressors. The 

only vasopressor treatment given to each of the 21 patients is 

NE for 2-24 hours. 

Using three different vantage points, we explore the 

predictions made by our model in this part. We explain other 

approaches for forecasting future MAPs, and we compare our 

predicted accuracy to those of these other methods. For real-

time forecasting, we must also take into account the processing 

cost. It shows the explain ability of our method's adaptive filter 

coefficients. 

 

B. Computational Output 

Here, we examine each method's ability to predict MAP 

accurately. We assess accuracy by calculating the root mean 

square error (RMSE) between the observed and forecasted 

MAP values. To determine how far ahead we can forecast 

MAP, we use a range of prediction times ranging from 3.33 

minutes to 20 minutes. The timer is set to 3.33 minutes for ease 

of use. For a sampling rate of 5Hz, this time corresponds to 

around 1000 samples. 

Noise and the interaction between sympathetic and 

parasympathetic nervous systems may be responsible for the 

0.001Hz to 0.01Hz oscillations in MAP measured in this study 

[22]. Our model does not include this part of MAP. That's why 

we don't keep a record of it. However, additional information 

may be necessary before this information can be included.  

Our proposed model is compared to another model as in 

Table I. More than 8.5 mmHg is forecasting, and it reaches 10 

mmHg at 10 minutes. As a result, in Table I, ARMAX is 

omitted. A MAP inaccuracy of less than 5 mmHg is preferred 

to maintain the patient's continued good health. To put it 

another way, our method is more efficient than the reduction 

rank least squares model and IIR model in terms of effective 

prediction time. 

 
Table I: RMSE of MAP prediction with prediction time 

 Mean MAP 

Error 

  

Prediction 

Time  

Our Method IIR Model Reduced rank 

mean squares 

3 3.5 3.5 3.0 
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6.2 4.2 4.3 4.1 

10 4.9 5.9 5.3 

13.8 5.0 7.5 6.1 

17 5.8 10.2 7.0 

20 6.2 13.2 7.9 

 

As shown in Table I, multiple comparisons are carried out after 

a well-balanced one- and two-way analysis of variance. Using 

the two-way ANOVA p-value of 2.88e-8 in the last column of 

Table II, we can conclude that the RMSE forecasts of the three 

approaches differ significantly. When the prediction time is 

greater than 6.67 minutes, the p-value drops below 0.05. When 

the prediction duration is longer than 6.67 minutes, the 

prediction RMSE of the three approaches may be separated. 

 

 C. Computational Cost 

In our models, the data memory length is equal to N. Table 

II shows how much each approach costs to compute concerning 

the amount of RAM available. This prediction process would 

be run in our system at 0.2 sec. 

In comparison to the IIR approach, our model is just five 

times as sluggish. Thus, the ARMAX method's processing time 

exceeds the sample period by more than 0.2 seconds.  

 
Fig. 3: ANOVA Results For RMSE IN 3 Methods 

Table II shows that the IIR model, which is the speed up and 

has the worst accuracy. To accurately forecast HR, PP, and KR, 

our model makes use of three different IIR models (three times 

the computational cost). An additional computational cost of 

around five times that of the IIR model is incurred when the 

three forecasts are combined using a 3N by 2 matrices [4].  
 

Table II: The computational cost compare with different model  

Data 

Memory 

size 

(Minutes) 

IR 

Model 

Our 

Model 

Reduced 

Rank 

Least 

Square 

AR 

Max 

2 10-4 10-3.2 10-1.8 10-0.2 

4 10-3.9 10-3.1 10-1.7 10-0.19375 

6 10-3.8 10-3.0 10-1.65 10-0.1875 

8 10-3.72 10-2.9 10-1.64 10-0.175 

10 10-3.68 10-2.8 10-1.63 10-0.1625 

12 10-3.6 10-2.7 10-1.62 10-0.15 

14 10-3.55 10-2.6 10-1.61 10-0.1375 

16 10-3.52 10-2.5 10-1.6 10-0.125 

18 10-3.52 10-2.4 10-1.59 10-1125 

20 10-3.51 10-2.3 10-1.5 10-

0.1062.5 

22 10-3.5 10-2.33 10-1.4 10-0.10625 

24 10-3.5 10-2.4 10-1.3 10-0.1 

 

In the end, ARMAX is the most sluggish than others as in 

table II. Iteratively repeating the all process till the prediction 

time is achieved will be necessary for the system to anticipate 

more than one future sample. 

 

D. Coefficients of the NE filter  

 

Furthermore, we may follow the filter coefficients, referred 

to in (9), for each physiological component using our model. 

However, It is important to note that our model coefficients do 

not just fluctuate with time but also vary between patients. It is 

important to note that the effects of NE vary depending on the 

type of patient and their current health situation. For HR and 

PP, we observed that the coefficients have similar behavior. 

Slower effects diminish for some individuals, such as patient 1, 

then for others, such as patient 2. 

KR operates differently than HR and PP. During the 14-

minute mark, patient 1 responds the most, while patient 2 

responds the least. Compared to HR and PP, KR exhibits a far 

greater degree of variability among patients. In general, the KR 

coefficients are much greater (by a factor of more than ten 

times) than the HR and PP coefficients. 

 

 
Fig. 4: Percentage of Standard Deviation of NE with different components  

 

There are the two components that makeup KR, and NE has 

been shown to have a significant impact on total peripheral 

resistance [23]. Different coefficient components related to NE 

are shown in Fig. 4. To illustrate the NE-MAP relationship, we 

depict the filter coefficients' standard deviations from the IIR 

filter. In general, Different components with NE for the vast 

majority of patients have relative standard deviations between 
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2% and 20%. The IIR coefficients/NE-MAP coefficients have 

much higher relative standard deviations.  

The HR filter coefficients (P-value 0.01) are substantially 

linked with the PP filter coefficients. The mean filter 

coefficients for 21 patients at the Intermountain Medical Center 

are negatively correlated. The PP response coefficients are also 

quite high. NE has a marginally greater impact on PP than HR. 

Since the average filter coefficients are modest, this shows that 

the patient's PP is not affected as much by NE as compare to 

another model. Our prediction has a 12-point range 

Vasopressors like NE, which are included in the calculation, 

increase this range by a factor of at least four-point. 

 

V. CONCLUSIONS 

 
The MAP modelling is considered with NE infusion to test 

individual sepsis patient in this work. We were able to develop a new 

MAP prediction model using data from the ICU. Two different 

databases were cross-validated using time series cross-validation. Our 

methods outperform three other proposed methods in terms of 

accuracy. In addition, the computing burden on our system is kept to a 

minimum. The learned filter coefficients also differ between patients, 

as we proposed. Since our method uses fewer computations, its 

accuracy is more than other approaches with less computational cost. 

A new approach for predicting the MAP in septic patients who are 

receiving NE as a vasopressor. In the future, we plan to use strong 

machine learning approach for arterial blood pressure model.  
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