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A B S T R A C T   

An important part of network security is a network intrusion detection system (NIDS). In the face of the need for 
new networks, there are issues regarding the feasibility of traditional approaches. More directly, these difficulties 
are connected to the increasing degrees of human contact required and the diminishing levels of detection 
precision. A new deep learning intrusion detection approach is presented in this research to overcome these 
problems. The recurrent non-symmetric deep autoencoder we’ve suggested for learning unsupervised features is 
described here (RNDAE). A new deep learning classification model based on LightGBM RNDAEs is also shown. 
NSL-KDD, CICIDS2017, and CSECICIDS2018 datasets were used to evaluate our proposed classifier in Tensor-
Flow. If our model holds up, it has the potential to be used in the latest generation of network intrusion detection 
systems (NIDS).   

1. Introduction 

Network intrusion detection systems have several obstacles, the most 
important of which is ensuring their long-term stability and depend-
ability. Despite substantial developments in NIDS technology, the bulk 
of NIDS systems [1] still relies on less capable signature-based detection 
approaches rather than anomaly detection methods. High false-error 
rate, difficulty in acquiring valid training data [2], data longevity, and 
system dynamics all contribute to this inability to move [3]. Because of 
the current state of affairs, relying on these techniques would only lead 
to poor detection shortly. With this challenge, we want to develop a 
technique for anomaly detection that can outpace the rapid changes in 
modern networks while still being universally accepted. Three key limits 
are mostly to blame for this network security problem. In the first place, 
the amount of network data is expected to continue to expand at a rapid 
pace. 

In recent years, as more people have access, IoT devices have become 
more popular, and cloud-based services have become more generally 
recognized, this industry has risen significantly. Data analysis methods 
must become quicker, more reliable, and more exact to deal with big 
numbers. Another consideration is how much detail and monitoring are 
necessary to increase efficiency and accuracy. For NIDS data analysis to 
move away from high-level abstractions, a more detailed and contextual 

approach is required. Behavioral changes can be traced back to network 
components such as operating system versions or protocols, for example. 
The last problem is that today’s networks are overflowing with so many 
different protocols and data types. Because it makes it difficult to 
distinguish between normal and abnormal behavior, this may be the 
most severe hindrance. As a result, it is more difficult to maintain an 
exact standard, and the risk of manipulation or zero-day attacks is 
increased [4]. 

Machine learning techniques including Naive Bayes, Decision Trees, 
and Support Vector Machines have recently been applied in NIDS 
research. In general, the use of these methods has increased the preci-
sion with which anomalies have been detected [5]. Data analysis, such 
as recognizing meaningful data and patterns, requires a high level of 
human experience because of these technologies’ limitations. Not only 
does this require a lot of time and money, but it is also susceptible to 
human error. In a varied and sophisticated situation, a large amount of 
training data may be challenging. 

Deep learning is being studied as a possible solution to the limita-
tions stated above [6]. There are ways around shallow learning that use 
this more sophisticated subset of machine learning. Deep learning may 
be able to overcome shallow learning approaches due to its better 
layer-wise characteristics, according to early studies. It allows for a more 
thorough investigation of network data and the quicker detection of 
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abnormalities. New deep learning models for NIDS activity in modern 
networks are presented in this research. It is possible to analyze a wide 
variety of network traffic using a model that combines deep and shallow 
learning. 

On top of Random Forest, we’ve proposed the Recurrent Non- 
symmetric Deep Auto-Encoder, or RNDAE, which we believe is supe-
rior to RF [7,8]. TensorFlow was used to run our model on the NSL-KDD, 
CICIDS2017, and CSECICIDS2018 datasets, and we got promising re-
sults. The dataset’s faults are known, yet they are nonetheless often used 
as a benchmark for comparable efforts, allowing us to make precise 
comparisons. 

The proposed model offers the following contributions.  

• Non-symmetric data dimensionality reduction for unsupervised 
feature learning is provided by the RNDAE approach instead of 
typical autoencoder techniques. Thus, our method is capable of 
producing better classification results than those typically employed.  

• RF classification is used with RNDAEs to create a unique classifier 
model. Deep learning and shallow learning approaches can be used 
in conjunction to decrease analytical overheads. This study’s out-
comes are on par with or better than those of other research in the 
field while using less training time. 

Listed below are the sections of this document. Contextual infor-
mation may be found in Section 2. Section 3 focuses on the current state 
of knowledge. In Section 5, we take a closer look at our solution, which is 
detailed in Section 4 of the report. In Section 6, we explain the findings 
of our evaluation. Conclusions are included in Section 7 of the study. 

2. Background 

In this section, we will present the context needed to comprehend our 
objectives and the concepts underlying the approach proposed in this 
work. 

2.1. Challenges 

Anomaly detection, forensics, and security have all made substantial 
use of network monitoring. Many new challenges have arisen for NIDSs 
due to recent technological developments. Considerable concerns 
include, but are not limited to.  

• Accuracy: The precise levels described above are not attainable with 
the technologies currently in use. As a result, more granularity, 
depth, and understanding of context are critical to providing a 
complete and accurate picture. Aside from the obvious inconve-
nience, there are also significant financial [10,12], computational, 
and practical [13] costs associated with this.  

• Attacks with low frequency: Attacks such as these have repeatedly 
eluded prior anomaly detection approaches, such as those involving 
artificial intelligence. Attacks of this nature, which occur infre-
quently, are harder to identify by NIDS due to the imbalances in the 
training dataset [11]. 

• Compliance: Modern networks have included several new technolo-
gies to lessen their dependency on aging infrastructure and the 
management practices that go along with it. Virtualization and 
software-defined networking (SDN) [15] are becoming increasingly 
popular in today’s network infrastructures. NIDS must be able to 
adapt to these new technologies and their impacts. 

2.1.1. Deep learning 
Deep learning is a subfield of machine learning that takes machine 

learning closer to artificial intelligence [16]. Using several levels of 
representation makes it simpler to convey complex concepts and re-
lationships Unsupervised [17] and supervised [14] learning algorithms 

are used to create higher levels of abstraction, based on the output 
characteristics from lower levels. 

We recommend using an autoencoder [18,19] because it is widely 
utilized in deep learning research. Using an unsupervised neural 
network, an autoencoder learns the optimal parameters for recreating its 
output as closely as possible to its input. In comparison to Principal 
Component Analysis (PCA) [20], it is capable of providing a more robust 
and non-linear generalization. 

As a result of using backpropagation [21], the final values are equal 
to their initial ones. That is to say, it makes an effort to learn as close as 
possible to the true identity function. An auto-encoder typically has an 
input layer, an output layer, and a hidden layer. In most cases, the input 
dimension is smaller than the layer that is being hidden. As may be seen 
in Fig. 1, an autoencoder is depicted. 

Using autoencoders as a nonlinear [22] transformation of their net-
works to reveal new data structures and comparing their findings with 
PCA is standard procedure among academics. These methods are built 
on the encoder-decoder [23] paradigm. As a result, the amount of data 
that has to be entered is reduced. An initial translation into a 
lower-dimensional space is followed by an expansion into the original 
data. Finally, when a certain number of layers have been trained, each 
layer’s code is fed into the next one. The deep auto-encoder structure 
contains a unique coding layer at its heart for this purpose. Compression 
of feature vectors for classification or stacking in an autoencoder may be 
achieved by using this coding layer. 

The hidden layer can be used to shrink large datasets. By reducing 
the dimensionality of the data distribution, the auto-encoder is driven to 
focus on the most critical characteristics. Ideally, the features generated 
by the auto-encoder will better reflect the data points than the raw data. 

3. Existing work 

There is a lot of interest in the topic of deep learning, and it is 
currently being used in a wide range of disciplines, including healthcare 
[24], automotive design [25], manufacturing [26], and even the police 
force. 

In addition, several previously published publications are concerned 
with NIDS. It is in this part that the most current and interesting findings 
will be highlighted. 

Several comparable publications in the literature investigate ma-
chine learning for intrusion detection [27]. Using a deep learning 
technique, intrusion detection systems may be built using deep learning 
ideas. Machine learning techniques for intrusion detection systems are 
being examined, according to a framework for software analysis. 
Intrusion detection systems are being evaluated for their ability to 
identify deep learning algorithms, according to an analysis of available 
methods. There is evidence that machine learning approaches are being 

Fig. 1. A simple autoencoder.  
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tested for intrusion detection equipment. The intrusion detection system 
data sets utilized by IDSs recommend research based on these data sets. 

Research on intrusion protection databases has recently been pub-
lished by Ref. [28] authors. 34 datasets and 15 characteristics have been 
outlined in detail. There are five types of environmental monitoring 
apps: general information, evaluation, data quantity and quality, and 
environmental monitoring. 

Intrusion detection applications are mentioned in a paper on deep 
learning methods [29]. In addition, any mining and learning tools 
deployed by the intrusion detection algorithm were made more complex 
by the study. The data used in this investigation was divided into three 
types: packets, Net Flow data, and publicly available data sets [30]. 
conducted an online analysis of intrusion detection techniques in 
comparative studies (IoT). The classification was made based on the 
recognition systems, the positioning of IDS, and the safety risks. 

Analysis of existing systems, including workloads, metrics, and 
procedures relevant to each standard evaluation parameter, provided by 
Ref. [31] authors [32]; authors developed the RBC-IDS methodology for 
the research of IDS viability. In the RBC-IDS comparison, adaptive 
learning techniques had a prediction rate of 99.12% and an accuracy 
rate of 99.91%, respectively. RBC-IDS was proposed as a method by the 
authors. 

Also, a real-time and computer-efficient anomaly detection tool has 
been presented by Ref. [17] to find causal connections between sub-
systems utilizing feature extraction algorithms and time series parti-
tions. Free energy assaults are detected using an anomaly index based on 
the DBN principle and Boltzmann computer-dependent learning 
methods. TPR accuracy of 98% and less than 2% FPR are achieved by the 
proposed device. 

A deep learning-based strategy for constructing a scalable and 
effective NIDS has been proposed by Ref. [33]. An auto-encoder and 
Softmax regression were used to create the NIDS. An intruder data 
collection of the benchmark network was tested using NSL-KDD. 

4. Proposed methodology 

4.1. Data pre-processing 

OneHotEncoder and min-max normalisation are the primary com-
ponents of the pre-processing scheme given here. In the pre-processing, 
you may encounter data that isn’t present in the dataset if you use the 
unlabeled raw as an input. Whenever we confront difficulties, we must 
be prepared to handle them. Missing values, strategy, and axis can all be 
sent to the Imputer class. For categorization variables with no such 
ordinal connection, the integer coding is insufficient. For insufficient 
execution or unexpected outcomes, it is possible for models to envision a 
usual order across categories by using this encoding. An onehotencoder 
can be used to encode the integer’s representation in this case. Here the 
encoded integer variable is removed, and a new binary variable is placed 
for each unique integer value. The datasets are normalized using the 
min-max normalisation to create unique data pieces. 

4.1.1. Feature selection using LightGBM 
LightGBM is a decision tree-based gradient boosting framework that 

improves model efficiency while consuming less memory. Gradient- 
based One-Side Sampling and Exclusive Feature Bundling are two 
unique strategies used to overcome the constraints of the histogram- 
based algorithm employed in all Gradient Boosting Decision Tree 
frameworks. The LightGBM Algorithm has the following characteristics: 
GOSS and EFB. To put it another way, they form the basis of the model 
and provide it an advantage over alternative GBDT frameworks. 

The information gain may be computed using a variety of different 
data examples. As gradient sizes increase, the amount of added infor-
mation increases as well. Maintaining accurate information gain esti-
mation is critical to GOSS, thus it discards those occurrences with minor 
gradients at random. When the range of the information gain is vast, this 

method, rather than uniformly random sampling, can provide a more 
precise estimate of gain. The procedural code is shown in Fig. 2. 

4.1.1.1. Classification. Here, we offer new RNDAE autoencoders that 
don’t use symmetrical hidden layers and instead use non-symmetric 
layers. An encoder phase is proposed as a replacement for encoding 
and decoding paradigms. Thus, it is possible to reduce computational 
and temporal overheads while ensuring excellent accuracy and 
efficiency. 

To extract hierarchical unsupervised features from huge datasets, 
NDAE can be used. It learns non-trivial features using a training method 
similar to that of a standard autoencoder. Fig. 3 depicts the structural 
differences between an autoencoder and an RNDAE. 

Our experiment’s methods should be shown using the proposed 
design. We sent in a request for training and testing data sets. A friendly 
or focused data collection is used for training, while a neutral or attack 
data collection is utilized for assault. Afterward, we’ll standardize the 
information we’ve accumulated thus far. A deep learning algorithm was 
used to teach the data once it had been standardized and then educated. 
Our IDS model was able to identify the assault since we used stan-
dardization to collect data during the testing procedure. Fig. 4 depicts 
the proposed architecture in all its glory. 

Before processing begins, the unlabeled raw data is presented, and 
you’ll find that there is no data in the resulting dataset. We need to be 
ready for everything that may come our way in the future. The Imputer 
class may pull in more arguments besides only the ones for determining 
missing values, approach, and axis. If there is no ordinal relationship 
between the variables, then the Integer’s coding is inappropriate. This 
encoding has the potential to lead to sparse execution or surprising 
outcomes for the model by allowing it to envision a conventional order 
between categories. 

Using min-max standardization, the datasets for this investigation 
will be transformed into specific data types. Detecting intrusions is one 
of the most challenging tasks for an intrusion detection system. We 
intend to reduce the complexity of the KDD cup 99 training datasets by 
removing standard data. The proposed pre-processing work improves 
false-positive rates and increases the overall power of the system. Cat-
egorical data are encoded, and numeric properties are normalized, as 
part of the recommended approach’s pre-processing module. 

5. Datasets 

1) NSL-KDD dataset: In NSL-KDD, all of KDDCUP99’s data is com-
bined into a single archive. Using the KDDCUP99 benchmark data, the 
NSL-KDD data collecting team examines the issues raised. Each NSL- 
KDD link record has 41 attributes designated as either standard or an 
attack, with one specific sort of attack. When it comes to NSL-KDD 
training, there are 22 different attack kinds to choose from, and there 
are an additional 17 attack types available just for testing purposes. 
Table 1 shows the distribution of the NSL-KDD dataset. 

DoS Attack: An assault known as denial-of-service (DoS) slows down 
or completely shuts down an organization’s network, making it impos-
sible to carry out legitimate business operations. Neptune, Smurf, Pod, 
and Teardrop are all that stand for this. 

Probe Attack: Data on the network can be accessed by another assault 
using the Probe attack. This sort of attack gathers information about the 
target system before launching an attack to circumvent security mea-
sures. Portsweep, IPsweep, Nmap, and Satan are just a few examples. 

Remote-to-Local (R2L) Attack: As a local user, an attacker can trans-
mit a packet across the network and exploit vulnerabilities like Password 
Guess, FTP-Write, Imap, and Phf. to get access to a remote workstation 
that they don’t have permission to access. 

User-to-Root (U2R) Attack: In this case, an attacker can get root access 
to a server by impersonating a normal user and taking advantage of 
vulnerabilities in the system. A few instances of Perl-based exploits are 
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Bug-overflow, Load-module, and Spy.  

2) CICIDS2017 Dataset: Real-world data is used to create the 
CICIDS2017 dataset, which explains why the dataset contains only 
benign and current attacks (PCAPs). Source and destination IPs, 
source and destination ports, protocols, and attacks are all included 
in the findings of the CICFlowMeter. Additionally, the definitions of 
the extracted characteristics are supplied. When creating this data-
set, we paid careful attention to including realistic background 
traffic. As a result of our B-Profile technology’s ability to offer 

genuine, innocuous background traffic, we’ve discovered how peo-
ple engage with each other. For this dataset, a total of 25 fictitious 
users were created using HTTP, HTTPS, FTP, SSH, and email 
protocols. 

Benign: With “RandomUnderSampler,” an Imblearn balancing library 
[9] python function, 270,000 traffic records (BENIGN) are sampled to 
address the imbalance problem. A minimum of 5000 records for each 
attack type is now required for this classifier to be effective in detecting 
assaults with low numbers of records of difficulties with multi-class 

Fig. 2. LightGBM pseudocode for feature selection.  

Fig. 3. Autoencoder vs RNDAE.  
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identification (MCID). Python’s SMOTE module is utilized to accomplish 
this task. 

Brute force attacks: Because they appear to get into accounts with bad 
username/password combinations, brute force assaults on networks are 
persistent. The third option was to use a central server brute force as-
sault dictionary to generate an SSH and MySQL account. 

DoS Attacks: It has been demonstrated that a single attacker machine 
may shut down web servers when using the strong tools Slowloris and 
LOIC. It begins with Slowloris, a device that creates a full TCP connec-
tion to a distant server. When the tool is running, it periodically sends 
incomplete HTTP requests to the server to maintain open sockets. There 
will be no more new connections possible because of the restricted 
connection handling capabilities of each web server. It’s also possible to 
perform DoS assaults on a website by using the HOIC software that’s 
widely available. 

DDoS Attacks: High Orbit Ion Cannon (HOIC), sometimes referred to 
as HOIC, is an open-source network stress test and denial of service 
attack tool designed to simultaneously impact up to 256 URLs. The Low 
Orbit Ion Cannon designed by Praetox Technologies was meant to be 
replaced. To launch a distributed denial-of-service assault, we’re uti-
lizing the free HOIC utility on four different machines. 

Botnet: A backdoor will be put on the victim’s PC if they are suc-
cessful in breaking into their system. Searching and destroying any other 
infected devices on the internal network is what we’ll be doing with his 
PC. The CICIDS2017 dataset’s distribution can be seen here. Keystroke 
recording and form capture is usually used to collect financial infor-
mation by the “man in the browser,” however they can be used for 
harmful and criminal purposes. Ransomware Crypto-Locker, a ransom-
ware variant, takes advantage of it as well for its distribution. The open- 
source Ares botnet, which is also utilized as an add-on, is capable of the 
following. 

Infiltration: This method involves sending a malicious file to the 
target through email and then taking advantage of a security flaw in the 
target’s software to compromise the system. If the breach is successful, a 
backdoor will be placed on the victim’s computer. Infected devices on 

the internal network will be found and attacked using his PC. The dis-
tribution of the CICIDS2017 dataset is shown below Table 2.  

3) CSECICIDS2018: DDoS data was collected by the University of New 
Brunswick and used in this dataset. You can access the entire dataset 
here. New versions of this dataset will be accessible at the website 
provided above if and when they are made available. Numerous 
DDoS attacks were recorded against the university’s servers while 
the dataset was available to the public. To determine whether or not 
the sent packets are malicious, it is crucial to keep the Label column 
in mind while developing machine learning notebooks for this data. 

Data is divided into files based on dates. The notebook designer has 
to partition the dataset into balanced files to generate better predictions. 
Table 3 illustrates the CSECICIDS2018 dataset’s distribution. 

6. Results and discussions 

Deep learning researchers utilize TensorFlow to develop their sug-
gested classification model. On a Windows 10 64-bit PC with 16 GB of 
RAM, TensorFlow GPU-enabled, we ran all of our experiments. NSL- 
KDD, CSECICIDS2017, and CSECICIDS2018 were used in our assess-
ments. The NIDS community considers these two datasets to be gold 
standards. It is much easier to compare results from various research and 
approaches when there are publicly available datasets to do so. Table 4 
compares the experimental results with well-established approaches 
such as DBN and DNN and highlights the differences. 

The proposed model has shown better accuracy over existing deep 
learning models. The performance of LightGBM + RNDAE approach on 
NSL_KDD has observed 96.5% accuracy. Notably, the model offered 
97.8% accuracy on CICIDS2017 dataset, and 98.8% accuracy on CSE-
CICIDS2018 dataset. The model accuracy is increased from 96.5% to 
97.8%, and 98.8% on NSL_KDD, CICIDS2017, and CSECIDIDS2018 
datasets respectively. 

7. Conclusion & future work 

As part of our research, we’ve examined some of the difficulties that 
existing NIDS approaches face. In response to this, our RNDAE technique 
for unsupervised feature learning was developed. We’ve created a new 
classification model using RNDAEs and the RF algorithm. 

Using TensorFlow to construct our model has been carefully tested, 
and we are satisfied with the results. NSL-KDD, CICIDS2017, and CSE-
CICIDS2018 datasets were used in our assessments, and our findings 
were quite good. Our model was evaluated on both benchmark datasets, 
and its classification accuracy was shown to be consistent across both 
sets. When it comes to accuracy, precision, and memory recall, we have 

Fig. 4. Proposed IDS architecture.  

Table 1 
Distribution of the NSL-KDD dataset.  

Attack type Flow count Training Test 

Normal 12717530 67412 9736 
DoS_Attack 659149 45915 7471 
Probe_Attack 281201 11683 2409 
R2L_Attack 114589 987 2743 
U2R_Attack 201901 51 202 
Total 13974370 126048 22561  

Table 2 
Distribution of the CICIDS2017dataset.  

Attack type Flow count Training Test 

SSH_Attack 239 185 40 
FTP_Attack 612 487 102 
XSS_Attack 186589 7535 1866 
Web_Attack 193370 1552 3750 
SQL_Injection_Attack 79 68 11 
Hulk_Attack 465653 18558 4678 
SlowHTTPTest_Attack 139982 56147 14006 
Slow_Loris_Attack 10934 4365 1091 
Goldeneye_Attack 41499 16522 42062 
HOIC_Attack 686114 27435 6870 
LOIC_UDP_Attack 1738 1358 341 
LOIC_HTTP_Attack 576289 23139 5752 
BoT_Attack 286187 11391 2971 
Infiltration 161940 6469 1629 
Benign 12697529 50995 12678 
Total 15448754 226206 97847  
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found that our way is the most effective. Our RNDAE model was 
compared to the usual DBN technique. Our model may increase accuracy 
by up to 5% while simultaneously lowering training time by up to 
98.81%, according to these experiments. 

Our model’s capability to cope with zero-day attacks will be assessed 
and expanded in future work. Following our previous assessments, we’ll 
use real-world backbone network traffic to prove that our expanded 
model works. 
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