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I.ABSTRACT 

Facial emotion recognition (FER) is critical for 
human-computer interaction in areas like clinical 
practice and behavioral description. With the 
heterogeneity of human faces and kinds of 
images like various facial poses such as happy, 
angry, sad, fear, disgust, surprised etc. and 
lighting, accurate and robust FER by computer 
models remains a challenge. Deep learning 
models, particularly Deep Convolutional Neural 
Networks (DCNNs), have shown great promise 
among all FER techniques due to their powerful 
automatic feature extraction and computational 
of efficiency. On the FER2013 dataset, the 
highest single-network classification accuracy 
has been attained in this paper. The VGGNet 
architecture is used, its hyper parameters are 
fine-tuned, and different optimization techniques 
are performed. This proposed model has 
achieved the state-of-the-art single-network 
accuracy of 90% on FER2013 without using any 
additional training data. 

I. INTRODUCTION 

Identifying expressions that convey basic emotions 

like fear, happiness, and disgust, among others, is 

thought as facial emotion recognition. It’s useful in 

human-computer interactions and may be utilized in 

digital advertising, online gaming, customer 

feedback evaluation, and healthcare. High emotion 

identifier accuracy has been achieved in pictures 

captured under controlled conditions and consistent 

environments thanks to advances in computer vision, 

making this a solved problem. Due to high intra-

class variation and low inter-class variation, such as 

changes in facial pose and subtle differences 

between expressions, challenges persist in emotion 

identifier under naturalistic terms. Computer vision 

research is constantly aiming to improve 

classification accuracy on such problems. Due to 

their computational efficiency and feature extraction  

 

Capability, Deep Convolutional Neural Networks 

(DCNNs) have shown great promise in image 

classification. For FER, they are the most widely 

used deep models. CNN model is used in facial 

emotion recognition because of its high accuracy. 

CNNs are very effective in reducing the number of 

parameters without losing quality.  

The goal of this study is to use DCNNs to improve 

prediction accuracy on FER2013. We use the VGG 

network to create a series of experiments to check 

various optimization algorithms and learning rate 

schedulers. We fine-tuned the model and training 

hyperparameters to attain state-of-the-art results with 

a 73.28 percent testing accuracy. This is, to the most 

effective of our knowledge, the very best single-

network accuracy achieved on FER2013 without the 

utilization of any additional training data. Then, to 

better understand the network's performance and 

decision-making process, we create several saliency 

maps. 

III.RELATED WORK 

DCNNs have shown great potential in image 
processing since their introduction in the late 1990s. 
A convolutional layer, a pooling layer, and a fully 
connected layer are all components of a typical 
DCNN. As a result, it's good at manipulating static 
images. However, due to a lack of training data and 
computing power at the time, the application of 
DCNNs was restricted. DCNNs became a much 
more viable tool in feature extraction and image 
classification after the 2010s, as computing power 
and the collection of larger datasets increased. 
Various techniques have been proposed to improve 
performance even more. To avoid gradient 
dispersion problems and speed up training, the 
sigmoid activation function has been replaced by 
Rectified Linear Unit (ReLU) activation. To down 
sample the inputs and aid in generalization, various 
pooling methods such as average pooling and max 
pooling are used. Dropout, regularization, and data 

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1336

20
22

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

n 
an

d 
El

ec
tro

ni
cs

 S
ys

te
m

s (
IC

C
ES

) |
 9

78
-1

-6
65

4-
96

34
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
C

ES
54

18
3.

20
22

.9
83

59
67

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore.  Restrictions apply. 



augmentation are used to avoid overfitting. To 
prevent gradient vanishing and exploding, batch 
normalization was developed. There has also been a 
lot of work put into developing different 
optimization algorithms that are used in training. 
Despite the lack of a systematic theoretical guideline 
for selecting an optimizer, empirical results show 
that a suitable optimization algorithm can 
significantly improve the performance of a model. 
Stochastic gradient descent is the most widely used 
optimizer (SGD). It's a straightforward method for 
updating a model's parameters based on the gradient 
of a single data point. To speed up training, a variety 
of variations of this algorithm have been proposed. 
SGD used to find the model parameters that 
correspond to the best fit between predicted and 
actual output. AdaGrad scales the learning rate for 
each network dimension adaptively. The learning 
rate is drastically reduced by RMSProp. By scaling 
the learning rate and introducing gradient 
momentum, Adam combines the benefits of 
AdaGrad and RMSProp. etc. 

One important factor that could affect 
performance, among many others, is the learning 
rate. Oscillations around the minima or loss 
divergence could result from a high learning rate. 
A low learning rate would significantly slow the 
model's convergence and could trap it in a non-
optimal local minimum. A common technique is to 
use a learning rate scheduler, which alters the 
learning rate. Learning rate during training. For 
instance, time- based decay reduces the learning 
rate either linearly or exponentially as the iteration 
number increases. Step decay drops the learning 
rate by a factor after certain epochs. An adaptive 
learning rate schedule tries to automatically adjust 
the learning at based on the local gradients during 
training. Cosine annealing resets the learning rate 
periodically and reuses “good weights” during the 
training process, etc... Cosine annealing also 
known as stochastic space gradient space decent 
with restarts helps in accelerating the training of 
deep neural networks. 

IV.EXPERIMENTS 

A. Preprocessing, Augmentation and Dataset 

When it comes to FER2013 training, we follow 
the ICML's official training, validation, and test 
sets. FER2013 includes 35888 images representing 
seven distinct emotions: anger, neutral, disgust, 
fear, happiness, sadness, and surprise. According to 
the competition organizers, Kaggle forum 
discussion, human accuracy on this dataset is 
between 65 and 68 percent 

 

 

Figure 1: VGGNet architecture. 

A face expression image is fed into the model. 

The four convolutional blocks (Conv) extract 

high-level features of the image and the fully-

connected (FC) layers classify the emotion of the 

image. 

A. TRAINING AND INTERFACE 

All of the experiments are run for 300 epochs 
with the cross-entropy loss optimized. In the 
sections that follow, we'll change things up a bit. 
Other parameters should be kept constant, including 
the optimizer and learning rate schedulers. We use a 
weight decay of 0.0001 and a fixed momentum of 
0.9. To avoid gradient underflow, all experiments 
are run with gradient scaling. Validation accuracy is 
used to assess the models, and standard ten-crop 
averaging is used to test them. 

Tuning 

We tune our model architecture to maximize 

performance at first. SGD was used in all of the 

initial experiments. After our fully connected 

layers, a grid search is used to determine the best 

batch size and drop-out rate. Following the 

optimization of the architecture, we investigate the 

effects of various optimizers and learning rate 

schedulers on the performance of our model. We 

then conducted a final experiment to fine-tune the 

weights of the trained model and improve its

 performance. 

Optimizer 

The goal of the first experiment is to seek out the 

foremost effective optimizer for training our 

architecture. SGD, SGD with Nesterov Momentum, 

Average SGD, Adam, Adam with AMSGrad, 

Adadelta, and Adagrad are the six algorithms we 

glance at. Despite the actual fact that several of those 

algorithms are very similar, understanding how they 

perform differently during this optimization will help 

us appreciate the importance of their minor 

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1337

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore.  Restrictions apply. 



differences. 

This experiment is run in two other ways. We run 

all algorithms with a set learning rate of 0.001 

within the first variation. A grid search was 

accustomed to determine this learning rate. Within 

the second variation, we founded a straightforward 

learning rate scheduler with an initial learning rate 

of 0.01 and an element of 0.75 reduction if the 

validation accuracy plateaus after 5 epochs. A grid 

search was also accustomed determine the 

parameters of this scheduler. After the initial 

optimization, all other parameters, like weight 

decay, momentum, dropout, and batch size, are 

kept constant. 

    LR SCHEDULE 

The next test will be to determine the best 
learning rate scheduler. We run the same 
architecture with 5 different schedulers in this 
section, using the optimal optimizer determined in 
the previous section: Reduce Learning Rate on 
Plateau (RLRP), Cosine Annealing (Cosine), 
Cosine Annealing with Warm Restarts 
(CosineWR), One Cycle Learning Rate 
(OneCycleLR), and Step Learning Rate (StepLR). 
We also ran a model with a constant learning rate 
that was determined using a grid search as a 
baseline. The initial learning rate for all schedulers 
is 0.01 and their parameters are chosen using a grid 
search. The rest of the parameters are kept 
constant. 

Despite their similarities, these schedulers 
perform the learning rate update differently. 
StepLR and RLRP, for example, both assume that 
the longer we train, the smaller our step sizes 
should become. RLRP, on the other hand, monitors 
the model's current performance before making a 
learning rate update, whereas StepLR reduces the 
learning rate after a set number of epochs. A 
cosine-based learning rate update function is also 
present in both Cosine Annealing and Cosine 
Annealing with Warm Restarts. As a result, the 
learning rate fluctuates between two values. The 
main difference is that the latter one regularly 
resets the model's parameters in order to maintain 
good model weights before proceeding with update 
steps. These minor variations could have a 
significant impact on the final performance. 
Advantages of having more data. 

B.VGGNetArchitecture 

VGGNet could be a convolutional neural network 
spec that has been utilized in large-scale image 
processing and pattern recognition for an extended 
time [35]. Figure 1 depicts our VGGNet variation. 

There are four convolutional stages and three fully 
connected layers within the network. Two 
convolutional blocks and a max-pooling layer are 
present in each of the convolutional stages. A 
convolutional layer, a ReLU activation, and a batch 
normalization layer conjure the convolution block. 
Batch normalization is employed to accelerate 
learning, reduce internal covariance shift, and avoid 
gradient vanishing or explosion [18]. A ReLU 
activation follows the activation of the primary two 
fully connected layers. The classification layer is that 
the third fully connected layer. Feature extraction, 
dimension reduction, and non-linearity are all 
handled by the convolutional stages. The fully 
connected layers are taught to classify inputs 
consistent with extracted features. 

Tuning 

We tune our model architecture to maximize 
performance at first. SGD was used in all of the 
initial experiments. After our fully connected 
layers, a grid search is used to determine the best 
batch size and drop-out rate. Following the 
optimization of the architecture, we investigate the 
effects of various optimizers and learning rate 
schedulers on the performance of our model. We 
then conducted a final experiment to fine-tune the 
weights of the trained model and improve its 
performance. 

Optimizer 

The goal of our first experiment is to seek out 
the foremost effective optimizer for training our 
architecture. SGD, SGD with Nesterov 
Momentum, Average SGD, Adam, Adam with 
AMSGrad, Adadelta, and Adagrad are the six 
algorithms we glance at. Despite the actual fact that 
several of those algorithms are very similar, 
understanding how they perform differently during 
this optimization will help us appreciate the 
importance of their minor differences. 

This experiment is run in two other ways. We 
run all algorithms with a set learning rate of 0.001 
within the first variation. A grid search was 
accustomed to determine this learning rate. Within 
the second variation, we founded a straightforward 
learning rate scheduler with an initial learning rate 
of 0.01 and an element of 0.75 reduction if the 
validation accuracy plateaus after 5 epochs. A grid 
search was also accustomed determine the 
parameters of this scheduler. After the initial 
optimization, all other parameters, like weight 
decay, momentum, dropout, and batch size, are 
kept constant. 

LRSchedule 
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The next test will be to determine the best 
learning rate scheduler. We run the same architecture 
with 5 different schedulers in this section, using the 
optimal optimizer determined in the previous section: 
Reduce Learning Rate on Plateau (RLRP), Cosine 
Annealing (Cosine), Cosine Annealing with Warm 
Restarts (CosineWR), One Cycle Learning Rate 
(OneCycleLR), and Step Learning Rate (StepLR). 
We also ran a model with a constant learning rate that 
was determined using a grid search as a baseline. The 
initial learning rate for all schedulers is 0.01 and their 
parameters are chosen using a grid search. The rest of 
the parameters are kept constant. Despite their 
similarities, these schedulers perform the learning 
rate update differently. StepLR and RLRP, for 
example, both assume that the longer we train, the 
smaller our step sizes should become. RLRP, on the 
other hand, monitors the model's current performance 
before making a learning rate update, whereas 
StepLR reduces the learning rate after a set number 
of epochs. A cosine-based learning rate update 
function is also present in both Cosine Annealing and 
Cosine Annealing with Warm Restarts. As a result, 
the learning rate fluctuates between two values. The 
main difference is that the latter one regularly resets 
the model's parameters in order to maintain good 
model weights before proceeding with update steps. 
These minor variations could have a significant 
impact on the final performance. 

Fine Tuning 

We then experimented with hyper-tuning our 
model's final weights to improve its accuracy even 
more. We reload the parameters and train for a 
final 50 epochs with a 0.0001 learning rate. 
Because this is an already trained model, we set 
this learning rate to keep the update steps small. 
This ensures that our model's weights are not 
skewed far away. Cosine Annealing and Cosine 
Annealing with Warm Restarts are used in this 
experiment because both of these schedulers 
slowly oscillate the learning rate back and forth, 
preventing major weight changes. The second 
schedule is also advantageous because its warm 
restarts would mean that the model's weights 
would be reset to a good location on a regular basis 
during updates.    

The validation set was then combined with the 
training set in a second variation of this experiment 
to allow for a larger dataset set when tuning. This 
larger dataset would provide the model with more 
samples from which to learn, resulting in improved 
performance. All other parameters are kept 
constant, except for the test set. We can confirm 
two things by running two variations of this 
experiment. We can confirm the effectiveness of 

the tuning by using the first variation. Using the 
second experiment, we can see the advantages of 
having more data. 

V.RESULTS 

Optimizer 

The impact of optimizers on the model's 
performance is first investigated and compared. 
Figure 2 depicts the validation accuracy achieved 
by our model when using various optimizers. The 
yellow bars depict the experiment's first variation, 
which used a constant learning rate, and the orange 
bars depict the second variation, which used a 
decaying learning rate. Except for Adadelta, all 
optimizers have a high validation accuracy of more 
than 70%. In both experiments, the model using the 
SGD with Nesterov momentum performs the best, 
with validation accuracy of 73.2 percent and 73.5 
percent, respectively. In addition, we discovered 
that Adam and its AMSGrad variant outperform 
Adadelta and Adagrad. Because Adam 
optimization introduces gradient momentum, it 
combines the advantages of AdaGrad and 
RMSProp. Last but not least, All SGD variants 
outperform all other optimizers on this dataset. 

LRSchedule 

Following that, we investigate the impact of 
various learning rate schedulers on our model. Our 
validation and testing accuracies are shown models. 
All of the runs in this section use SGD with Nesterov 
momentum, the best-performing optimizer from the 
previous section. The first point to mention is that 
Reducing Learning Rate on Plateau (RLRP) is the 
most effective method. It has a testing accuracy of 
73.06 percent and a validation accuracy of 73.59 
percent. To our knowledge, this already outperforms 
the previous state-of-the-art single-network 
performance. 

Because the testing accuracies we're reporting 
are solely for public benchmarking, we'll focus on 
validation accuracy for the next set of comparisons. 
Some of the other schedulers are outperformed by 
the constant learning rate (OneCycleRL and 
StepLR). This could be because OneCycleLR is 
typically designed for fast training with higher 
learning rates, which may not be applicable on 
FER2013. 

The results of Cosine Annealing and Cosine 
Annealing with Warm Restart are comparable. 
When StepLR and RLRP are compared, they both 
gradually reduce the learning rate to a minimum. 
RLRP performs better because it monitors current 
performance before deciding when to reduce the 
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learning rate, rather than reducing the learning rate 
in a systematic manner 

 

Fig 2: how many images uploaded based on 
emotions 

     FIG 3: Accuracy and loss of trained data 

 

Confusion Matrix 

On the FER2013 testing set, Figure 4 shows the 
final model's confusion matrix. The model correctly 
classifies the emotions "happiness" and "surprise." 
It, on the other hand, makes the most errors when 
determining the difference between "disgust" and 
"anger." Next, the low classification accuracy in 
"disgust" and "fear" can be attributed to the fact 
that the original training set contains fewer 
samples. The misclassification of "fear" and 
"sadness" could be due to the dataset's inter-class 
similarities 

FIG 4: confusion matrix 

 

VI. CONCLUSION 

Using a VGGNet, this paper achieves single-

network state-of-the-art classification accuracy on 

FER2013. All hyper parameters are fine-tuned to 

achieve an optimized model for facial emotion 

recognition. Different optimizers and learning rate 

schedulers are investigated, and the best initial 

testing classification accuracy achieved is 73.06 

percent, which exceeds all previous single-

network accuracies. We also use Cosine 

Annealing to fine-tune our model and combine the 

training and validation datasets to increase the 

classification accuracy to 73.28 percent. To 

improve our performance in facial emotion 

recognition, we plan to use FER2013 to 

investigate different image processing techniques 

and ensembles of different deep learning 

architectures 
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