
Facial Emotion Recognition using DCNN Algorithm

Kurra Santhi Sri

AssociateProfessor, Information Technology

Vignan’s Foundation for Science Technology and

Research Vadlamudi, India

srisanthi@gmail.com

 Namburu Naveen Kumar,Velivela D Satish

Information Technology

Vignan’s Foundation for Science Technology and

Research Vadlamudi, India

sainaveenkumar.169@gmail.com

devendrasatishvelivela@gmail.com

I.ABSTRACT

Facial emotion recognition (FER) is critical for
human-computer interaction in areas like clinical
practice and behavioral description. With the
heterogeneity of human faces and kinds of
images like various facial poses such as happy,
angry, sad, fear, disgust, surprised etc. and
lighting, accurate and robust FER by computer
models remains a challenge. Deep learning
models, particularly Deep Convolutional Neural
Networks (DCNNs), have shown great promise
among all FER techniques due to their powerful
automatic feature extraction and computational
of efficiency. On the FER2013 dataset, the
highest single-network classification accuracy
has been attained in this paper. The VGGNet
architecture is used, its hyper parameters are
fine-tuned, and different optimization techniques
are performed. This proposed model has
achieved the state-of-the-art single-network
accuracy of 90% on FER2013 without using any
additional training data.

I. INTRODUCTION

Identifying expressions that convey basic emotions

like fear, happiness, and disgust, among others, is

thought as facial emotion recognition. It’s useful in

human-computer interactions and may be utilized in

digital advertising, online gaming, customer

feedback evaluation, and healthcare. High emotion

identifier accuracy has been achieved in pictures

captured under controlled conditions and consistent

environments thanks to advances in computer vision,

making this a solved problem. Due to high intra-

class variation and low inter-class variation, such as

changes in facial pose and subtle differences

between expressions, challenges persist in emotion

identifier under naturalistic terms. Computer vision

research is constantly aiming to improve

classification accuracy on such problems. Due to

their computational efficiency and feature extraction

Capability, Deep Convolutional Neural Networks

(DCNNs) have shown great promise in image

classification. For FER, they are the most widely

used deep models. CNN model is used in facial

emotion recognition because of its high accuracy.

CNNs are very effective in reducing the number of

parameters without losing quality.

The goal of this study is to use DCNNs to improve

prediction accuracy on FER2013. We use the VGG

network to create a series of experiments to check

various optimization algorithms and learning rate

schedulers. We fine-tuned the model and training

hyperparameters to attain state-of-the-art results with

a 73.28 percent testing accuracy. This is, to the most

effective of our knowledge, the very best single-

network accuracy achieved on FER2013 without the

utilization of any additional training data. Then, to

better understand the network's performance and

decision-making process, we create several saliency

maps.

III.RELATED WORK

DCNNs have shown great potential in image
processing since their introduction in the late 1990s.
A convolutional layer, a pooling layer, and a fully
connected layer are all components of a typical
DCNN. As a result, it's good at manipulating static
images. However, due to a lack of training data and
computing power at the time, the application of
DCNNs was restricted. DCNNs became a much
more viable tool in feature extraction and image
classification after the 2010s, as computing power
and the collection of larger datasets increased.
Various techniques have been proposed to improve
performance even more. To avoid gradient
dispersion problems and speed up training, the
sigmoid activation function has been replaced by
Rectified Linear Unit (ReLU) activation. To down
sample the inputs and aid in generalization, various
pooling methods such as average pooling and max
pooling are used. Dropout, regularization, and data

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1336

20
22

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

n
an

d
El

ec
tro

ni
cs

 S
ys

te
m

s (
IC

C
ES

) |
 9

78
-1

-6
65

4-
96

34
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

ES
54

18
3.

20
22

.9
83

59
67

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore. Restrictions apply.

augmentation are used to avoid overfitting. To
prevent gradient vanishing and exploding, batch
normalization was developed. There has also been a
lot of work put into developing different
optimization algorithms that are used in training.
Despite the lack of a systematic theoretical guideline
for selecting an optimizer, empirical results show
that a suitable optimization algorithm can
significantly improve the performance of a model.
Stochastic gradient descent is the most widely used
optimizer (SGD). It's a straightforward method for
updating a model's parameters based on the gradient
of a single data point. To speed up training, a variety
of variations of this algorithm have been proposed.
SGD used to find the model parameters that
correspond to the best fit between predicted and
actual output. AdaGrad scales the learning rate for
each network dimension adaptively. The learning
rate is drastically reduced by RMSProp. By scaling
the learning rate and introducing gradient
momentum, Adam combines the benefits of
AdaGrad and RMSProp. etc.

One important factor that could affect
performance, among many others, is the learning
rate. Oscillations around the minima or loss
divergence could result from a high learning rate.
A low learning rate would significantly slow the
model's convergence and could trap it in a non-
optimal local minimum. A common technique is to
use a learning rate scheduler, which alters the
learning rate. Learning rate during training. For
instance, time- based decay reduces the learning
rate either linearly or exponentially as the iteration
number increases. Step decay drops the learning
rate by a factor after certain epochs. An adaptive
learning rate schedule tries to automatically adjust
the learning at based on the local gradients during
training. Cosine annealing resets the learning rate
periodically and reuses “good weights” during the
training process, etc... Cosine annealing also
known as stochastic space gradient space decent
with restarts helps in accelerating the training of
deep neural networks.

IV.EXPERIMENTS

A. Preprocessing, Augmentation and Dataset

When it comes to FER2013 training, we follow
the ICML's official training, validation, and test
sets. FER2013 includes 35888 images representing
seven distinct emotions: anger, neutral, disgust,
fear, happiness, sadness, and surprise. According to
the competition organizers, Kaggle forum
discussion, human accuracy on this dataset is
between 65 and 68 percent

Figure 1: VGGNet architecture.

A face expression image is fed into the model.

The four convolutional blocks (Conv) extract

high-level features of the image and the fully-

connected (FC) layers classify the emotion of the

image.

A. TRAINING AND INTERFACE

All of the experiments are run for 300 epochs
with the cross-entropy loss optimized. In the
sections that follow, we'll change things up a bit.
Other parameters should be kept constant, including
the optimizer and learning rate schedulers. We use a
weight decay of 0.0001 and a fixed momentum of
0.9. To avoid gradient underflow, all experiments
are run with gradient scaling. Validation accuracy is
used to assess the models, and standard ten-crop
averaging is used to test them.

Tuning

We tune our model architecture to maximize

performance at first. SGD was used in all of the

initial experiments. After our fully connected

layers, a grid search is used to determine the best

batch size and drop-out rate. Following the

optimization of the architecture, we investigate the

effects of various optimizers and learning rate

schedulers on the performance of our model. We

then conducted a final experiment to fine-tune the

weights of the trained model and improve its

 performance.

Optimizer

The goal of the first experiment is to seek out the

foremost effective optimizer for training our

architecture. SGD, SGD with Nesterov Momentum,

Average SGD, Adam, Adam with AMSGrad,

Adadelta, and Adagrad are the six algorithms we

glance at. Despite the actual fact that several of those

algorithms are very similar, understanding how they

perform differently during this optimization will help

us appreciate the importance of their minor

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1337

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore. Restrictions apply.

differences.

This experiment is run in two other ways. We run

all algorithms with a set learning rate of 0.001

within the first variation. A grid search was

accustomed to determine this learning rate. Within

the second variation, we founded a straightforward

learning rate scheduler with an initial learning rate

of 0.01 and an element of 0.75 reduction if the

validation accuracy plateaus after 5 epochs. A grid

search was also accustomed determine the

parameters of this scheduler. After the initial

optimization, all other parameters, like weight

decay, momentum, dropout, and batch size, are

kept constant.

 LR SCHEDULE

The next test will be to determine the best
learning rate scheduler. We run the same
architecture with 5 different schedulers in this
section, using the optimal optimizer determined in
the previous section: Reduce Learning Rate on
Plateau (RLRP), Cosine Annealing (Cosine),
Cosine Annealing with Warm Restarts
(CosineWR), One Cycle Learning Rate
(OneCycleLR), and Step Learning Rate (StepLR).
We also ran a model with a constant learning rate
that was determined using a grid search as a
baseline. The initial learning rate for all schedulers
is 0.01 and their parameters are chosen using a grid
search. The rest of the parameters are kept
constant.

Despite their similarities, these schedulers
perform the learning rate update differently.
StepLR and RLRP, for example, both assume that
the longer we train, the smaller our step sizes
should become. RLRP, on the other hand, monitors
the model's current performance before making a
learning rate update, whereas StepLR reduces the
learning rate after a set number of epochs. A
cosine-based learning rate update function is also
present in both Cosine Annealing and Cosine
Annealing with Warm Restarts. As a result, the
learning rate fluctuates between two values. The
main difference is that the latter one regularly
resets the model's parameters in order to maintain
good model weights before proceeding with update
steps. These minor variations could have a
significant impact on the final performance.
Advantages of having more data.

B.VGGNetArchitecture

VGGNet could be a convolutional neural network
spec that has been utilized in large-scale image
processing and pattern recognition for an extended
time [35]. Figure 1 depicts our VGGNet variation.

There are four convolutional stages and three fully
connected layers within the network. Two
convolutional blocks and a max-pooling layer are
present in each of the convolutional stages. A
convolutional layer, a ReLU activation, and a batch
normalization layer conjure the convolution block.
Batch normalization is employed to accelerate
learning, reduce internal covariance shift, and avoid
gradient vanishing or explosion [18]. A ReLU
activation follows the activation of the primary two
fully connected layers. The classification layer is that
the third fully connected layer. Feature extraction,
dimension reduction, and non-linearity are all
handled by the convolutional stages. The fully
connected layers are taught to classify inputs
consistent with extracted features.

Tuning

We tune our model architecture to maximize
performance at first. SGD was used in all of the
initial experiments. After our fully connected
layers, a grid search is used to determine the best
batch size and drop-out rate. Following the
optimization of the architecture, we investigate the
effects of various optimizers and learning rate
schedulers on the performance of our model. We
then conducted a final experiment to fine-tune the
weights of the trained model and improve its
performance.

Optimizer

The goal of our first experiment is to seek out
the foremost effective optimizer for training our
architecture. SGD, SGD with Nesterov
Momentum, Average SGD, Adam, Adam with
AMSGrad, Adadelta, and Adagrad are the six
algorithms we glance at. Despite the actual fact that
several of those algorithms are very similar,
understanding how they perform differently during
this optimization will help us appreciate the
importance of their minor differences.

This experiment is run in two other ways. We
run all algorithms with a set learning rate of 0.001
within the first variation. A grid search was
accustomed to determine this learning rate. Within
the second variation, we founded a straightforward
learning rate scheduler with an initial learning rate
of 0.01 and an element of 0.75 reduction if the
validation accuracy plateaus after 5 epochs. A grid
search was also accustomed determine the
parameters of this scheduler. After the initial
optimization, all other parameters, like weight
decay, momentum, dropout, and batch size, are
kept constant.

LRSchedule

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1338

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore. Restrictions apply.

The next test will be to determine the best
learning rate scheduler. We run the same architecture
with 5 different schedulers in this section, using the
optimal optimizer determined in the previous section:
Reduce Learning Rate on Plateau (RLRP), Cosine
Annealing (Cosine), Cosine Annealing with Warm
Restarts (CosineWR), One Cycle Learning Rate
(OneCycleLR), and Step Learning Rate (StepLR).
We also ran a model with a constant learning rate that
was determined using a grid search as a baseline. The
initial learning rate for all schedulers is 0.01 and their
parameters are chosen using a grid search. The rest of
the parameters are kept constant. Despite their
similarities, these schedulers perform the learning
rate update differently. StepLR and RLRP, for
example, both assume that the longer we train, the
smaller our step sizes should become. RLRP, on the
other hand, monitors the model's current performance
before making a learning rate update, whereas
StepLR reduces the learning rate after a set number
of epochs. A cosine-based learning rate update
function is also present in both Cosine Annealing and
Cosine Annealing with Warm Restarts. As a result,
the learning rate fluctuates between two values. The
main difference is that the latter one regularly resets
the model's parameters in order to maintain good
model weights before proceeding with update steps.
These minor variations could have a significant
impact on the final performance.

Fine Tuning

We then experimented with hyper-tuning our
model's final weights to improve its accuracy even
more. We reload the parameters and train for a
final 50 epochs with a 0.0001 learning rate.
Because this is an already trained model, we set
this learning rate to keep the update steps small.
This ensures that our model's weights are not
skewed far away. Cosine Annealing and Cosine
Annealing with Warm Restarts are used in this
experiment because both of these schedulers
slowly oscillate the learning rate back and forth,
preventing major weight changes. The second
schedule is also advantageous because its warm
restarts would mean that the model's weights
would be reset to a good location on a regular basis
during updates.

The validation set was then combined with the
training set in a second variation of this experiment
to allow for a larger dataset set when tuning. This
larger dataset would provide the model with more
samples from which to learn, resulting in improved
performance. All other parameters are kept
constant, except for the test set. We can confirm
two things by running two variations of this
experiment. We can confirm the effectiveness of

the tuning by using the first variation. Using the
second experiment, we can see the advantages of
having more data.

V.RESULTS

Optimizer

The impact of optimizers on the model's
performance is first investigated and compared.
Figure 2 depicts the validation accuracy achieved
by our model when using various optimizers. The
yellow bars depict the experiment's first variation,
which used a constant learning rate, and the orange
bars depict the second variation, which used a
decaying learning rate. Except for Adadelta, all
optimizers have a high validation accuracy of more
than 70%. In both experiments, the model using the
SGD with Nesterov momentum performs the best,
with validation accuracy of 73.2 percent and 73.5
percent, respectively. In addition, we discovered
that Adam and its AMSGrad variant outperform
Adadelta and Adagrad. Because Adam
optimization introduces gradient momentum, it
combines the advantages of AdaGrad and
RMSProp. Last but not least, All SGD variants
outperform all other optimizers on this dataset.

LRSchedule

Following that, we investigate the impact of
various learning rate schedulers on our model. Our
validation and testing accuracies are shown models.
All of the runs in this section use SGD with Nesterov
momentum, the best-performing optimizer from the
previous section. The first point to mention is that
Reducing Learning Rate on Plateau (RLRP) is the
most effective method. It has a testing accuracy of
73.06 percent and a validation accuracy of 73.59
percent. To our knowledge, this already outperforms
the previous state-of-the-art single-network
performance.

Because the testing accuracies we're reporting
are solely for public benchmarking, we'll focus on
validation accuracy for the next set of comparisons.
Some of the other schedulers are outperformed by
the constant learning rate (OneCycleRL and
StepLR). This could be because OneCycleLR is
typically designed for fast training with higher
learning rates, which may not be applicable on
FER2013.

The results of Cosine Annealing and Cosine
Annealing with Warm Restart are comparable.
When StepLR and RLRP are compared, they both
gradually reduce the learning rate to a minimum.
RLRP performs better because it monitors current
performance before deciding when to reduce the

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1339

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore. Restrictions apply.

learning rate, rather than reducing the learning rate
in a systematic manner

Fig 2: how many images uploaded based on
emotions

 FIG 3: Accuracy and loss of trained data

Confusion Matrix

On the FER2013 testing set, Figure 4 shows the
final model's confusion matrix. The model correctly
classifies the emotions "happiness" and "surprise."
It, on the other hand, makes the most errors when
determining the difference between "disgust" and
"anger." Next, the low classification accuracy in
"disgust" and "fear" can be attributed to the fact
that the original training set contains fewer
samples. The misclassification of "fear" and
"sadness" could be due to the dataset's inter-class
similarities

FIG 4: confusion matrix

VI. CONCLUSION

Using a VGGNet, this paper achieves single-

network state-of-the-art classification accuracy on

FER2013. All hyper parameters are fine-tuned to

achieve an optimized model for facial emotion

recognition. Different optimizers and learning rate

schedulers are investigated, and the best initial

testing classification accuracy achieved is 73.06

percent, which exceeds all previous single-

network accuracies. We also use Cosine

Annealing to fine-tune our model and combine the

training and validation datasets to increase the

classification accuracy to 73.28 percent. To

improve our performance in facial emotion

recognition, we plan to use FER2013 to

investigate different image processing techniques

and ensembles of different deep learning

architectures

VII. REFERENCES

[1] M. S. Bartlett, G. Littlewort, I. Fasel, and J. R. Movellan, “Real Time

Face Detection and Facial Expression Recognition:

DevelopmentandApplicationstoHumanComputerInteraction,” in IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2003, vol. 5, doi:

10.1109/CVPRW.2003.10057.

[2] F. Abdat, C. Maaoui, and A. Pruski, “Human-computer interaction

using emotion recognition from facial expression,” in Proceedings -

UKSim 5th European Modelling Symposium on Computer Modelling

and Simulation, EMS 2011, 2011, doi: 10.1109/EMS.2011.20.B. Fasel

and J. Luettin, “Automatic facial expression

analysis:Asurvey,”PatternRecognition,vol.36,no.1.2003,doi:

10.1016/S0031-3203(02)00052-3.

[3] E. Sariyanidi, H. Gunes, and A. Cavallaro, “Automatic analysis of

facial affect: A survey of registration, representation, and recognition,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

37, no. 6. 2015, doi: 10.1109/TPAMI.2014.2366127.

[4] N. Mehendale, “Facial emotion recognition using convolutiona

lneural networks (FERC),SNAppl.Sci” vol.2,no. 3, 2020,

doi:10.1007/s42452-020-2234-1.

[5] V. Tümen, Ö. F. Söylemez, and B. Ergen, “Facial emotion

recognitiononadatasetusingConvolutionalNeuralNetwork,”in IDAP

2017 - International Artificial Intelligence and Data

ProcessingSymposium,2017,doi:10.1109/IDAP.2017.8090281.

[6] D.K.Jain, P.Shamsolmoali,andP.Sehdev,“Extended deep neural

network for facial emotion recognition,”PatternRecognit. Lett., vol.

120, 2019, doi:10.1016/j.patrec.2019.01.008.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,” Commun.

ACM, vol. 60, no. 6, 2017, doi:10.1145/3065386.

[8] O. Gervasi, V. Franzoni, M. Riganelli, and S. Tasso,

“Automating facial emotion recognition,”WebIntell.,vol.17,no. 1,

2019, doi:10.3233/WEB-190397.

[9] M. M. Taghi Zadeh, M. Imani, and B. Majidi, “Fast Facial

emotion recognition Using Convolutional Neural Networks and

Gabor Filters,” in 2019 IEEE 5th Conference on Knowledge

[10] Based Engineering and Innovation, KBEI 2019, 2019, doi:

10.1109/KBEI.2019.8734943.

[11] E. Pranav, S. Kamal, C. Satheesh Chandran, and M. H.

Supriya,“FacialEmotionRecognitionUsingDeepConvolutional Neural

Network,” in 2020 6th International Conference on Advanced

Computing and Communication Systems, ICACCS 2020, 2020,

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1340

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore. Restrictions apply.

doi:10.1109/ICACCS48705.2020.9074302.

[12] I. J. Goodfellow et al., “Challenges in representation learning: A

report on three machine learning contests,” Neural Networks, vol. 64,

2015, doi:10.1016/j.neunet.2014.09.005.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient- based

learning applied to document recognition,”Proc.IEEE,vol. 86, no. 11,

1998, doi:10.1109/5.726791.

[14] G.E.Dahl,T.N.Sainath,andG.E.Hinton,“Improving deep neural

networks for LVCSR using rectified linear units and dropout,” in

ICASSP, IEEE International Conference on

Acoustics,SpeechandSignalProcessing-Proceedings,2013,doi:

10.1109/ICASSP.2013.6639346.

Proceedings of the Seventh International Conference on Communication and Electronics Systems (ICCES 2022)
IEEE Xplore Part Number: CFP22AWO-ART; ISBN: 978-1-6654-9634-6

978-1-6654-9634-6/22/$31.00 ©2022 IEEE 1341

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on August 11,2022 at 06:33:51 UTC from IEEE Xplore. Restrictions apply.

