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A B S T R A C T   

During the last decade, several studies have been conducted to improve efficiency and robustness in the detection 
and segmentation of brain tumors based on different parameters like size, shape, location, and contrasts. This 
study proposes Multimodal Attention-gated Cascaded U-Net (MAC U-Net) model to address the performance 
issues observed in the detection and segmentation of low-grade tumors. The effectiveness of group normalization 
with attention gate is also explored with skip connections to segment small-scale brain tumors using several 
highlighted salient features. The model is evaluated on the brain tumor benchmark dataset BraTS2018 over 
various performance metrics such as Dice, IoU, Sensitivity, Specificity, and Accuracy. Experimental results 
illustrate that the proposed MAC U-net on BraTS 2018 dataset outperforms baseline U-nets with 94.47, 84.12, 
and 82.72 dice similarity coefficient values on HGG and 85.71, 78.85 and 74.16 on LGG subjects with Ground 
Truth values of Complete Tumor, Tumor Core, and Enhancing tumor, respectively. The proposed model is also 
evaluated on BraTS 2019 and BraTS 2020 datasets. Moreover, MAC U-net achieves superior performance over 
typical conventional brain tumor segmentation methods especially in terms of low-grade gliomas.   

1. Introduction 

A brain tumor is a collection or mass of abnormal cells in the brain 
(central nervous system tumor), which, in turn, disrupts the functions of 
the brain. Brain tumors can be mainly classified into malignant 
(cancerous) and benign (non-cancerous) tumors. Brain tumors occur 
mainly due to excessive exposure to radiation or cancer treatments or 
due to hereditary transmission. As per WHO (World Health Organiza-
tion) [1–3], 30% of people diagnosed with a brain tumor do not recover 
from the disease. Gliomas, the most common type of brain tumor, 
develop from glial cells and meningiomas, which originate in the 
meninges. WHO classified gliomas as high-grade glioma (HGG) and low- 
grade glioma (LGG) based on their characteristics. They are further 
divided into Grade I (non-infiltrative, slow in growth, curable via sur-
gery and long-term survival of victim), Grade II (infiltrative and rela-
tively slow in growth and may turn into high grade), Grade III 
(malignant, infiltrative, moderate in growth and high turn into a high 
grade), and Grade IV (most malignant, widely infiltrative, and rapid in 
growth). These tumors are treated by medical practitioners using sur-
gery, radiation therapy, or chemotherapy alone or in combination. 

Clinical expertise is extremely essential in the detection (estimating 

the location and type) and segmentation of brain tumors using magnetic 
resonance imaging (MRI). The task is cumbersome because of lesion 
localization, and slice-wise decision-making. The effectiveness of the 
manual approach in identification and segmentation largely depends on 
the expertise of the clinician. Automated brain tumor segmentation is an 
alternative approach that can lead to reliable decision-making with high 
accuracy. However, developing an automated system that detects brain 
tumors requires expertise in both computer engineering as well as 
medical science. Creating an automated system to detect brain tumors is 
a challenging task because tumor intensity varies in surrounding healthy 
cells. Furthermore, these tissues often show variations in size, shape, and 
localization. Recently, several studies were conducted on deep learning 
models to improve tumor segmentation, thereby increasing diagnostic 
and treatment accuracy and precision. MRI imaging typically allows 
different types of sequences to best visualize data aspects of the brain by 
adjusting repetition time (TR) and echo time (TE) parameters. In T1 
sequences, good contrasts observed between tissues, whereas the 
brightness of lipids is relatively higher than that of cerebrospinal fluid 
(CSF); dense bones also appear. Contrast-enhanced T1-weighted (TICE) 
sequences are used to detect tumor borders, facilitating an easier 
distinction between necrotic and active tumors. T2 sequences determine 
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whether the edema is associated with a tumor. The fast Fluid-Attenuated 
Inversion Recovery (FLAIR) sequence is effective at distinguishing 
edema from CSF. Generally, tumors like enhancing tumors and tumor 
core are very small in size. The performance of the existing automated 
segmentation models is limited in segmenting tumor core or enhancing 
tumor. Hence, deep learning models need to be employed with more 
“attention” to ensure effective documentation in all such cases. 

In general, U-Net is limited in accuracy in segmenting small scale 
tumors due to reduction of dimensions during down-sampling. Brain 
tumors are generally in complex shapes with diverse sizes. The task of 
tumor segmentation is to enhance accuracy in segmentation using 
attention mechanism, which enhance the local feature expression. In 
this work, authors aimed to explore the effectiveness of the attention 
gate in segmentation of small-scale tumors. 

Majority models in the literature are suffering with network convo-
lution across different modalities. The computation of feature difference 
between glioma and normal tissue is evolved as a major challenge for 
categorization of different grades of tumor. In this connection, 
discrimination of tissue contours needs multi-scale semantic informa-
tion to reduce the information loss during convolution. Single modal U- 
Net could not be able to segment the grade and contour of the brain 
accurately. 

Basically, model accuracy is highly correlated with batch size in 
batch normalization, but due to memory limitations in model building, 
authors intended to take the advantage of group normalization. Group 
normalization addresses channel dependencies and memory intensive 
issues. 

Majority of the literature models are more successful in handling 
HGG when compared to LGG. Segmentation of LGG is complex due to its 
simple internal structure with lower contrast and compactness. 
Furthermore, LGG also does not exhibit any necrosis, perifocal edema 
and hemorrhagic foci. To overcome the above limitations, in this work 
gradient levels are well controlled and convergence process was speed 
up with reduced effect of internal covariate shift through the usage of 
Group Normalization and Self Attention module. In general, LGG tumors 
have uniform intensity distribution across boundaries, and their lesion 
area is more distinguishable from T2 and flair modalities, are intended 
for proposed model building. 

To address all the above limitations, authors propose the Multimodal 
Attention-gated Cascaded U-Net Model for Automatic Brain Tumor 
Detection and Segmentation with following Objectives:  

• Design and development of 9-layer attention-gated U-Net model with 
Group Normalization (GN) that for detection of full tumor from Flair 
and T2 MRI modalities in the first phase.  

• The combination of Average and Maxpooling aimed to minimize the 
feature loss during downsmapling.  

• Design and development of 7-layer attention gated U-Net model with 
GN to segment small-size tumors from T1 CE in the second phase.  

• Decisions level fusion is performed over predicted full tumor in phase 
I, Enhanced Tumor and Tumor Core in phase -II to detect and 
segment low-grade tumors. The outcomes are compared with the 
Ground Truth and clinician (domain expert) opinion. 

The rest of the paper is organized as follows: Section 2 presents a 
thorough review of the literature published on unimodal and multi-
modal brain tumor segmentation. Section 3 presents the proposed MAC 
U-Net architecture for multimodal brain segmentation. Section 4 pre-
sents experimental results and discussions. Finally, the conclusion and 
future scope are presented in Section 5. 

2. Related work 

Brain tumor segmentation involves the separation of tumor tissues 
such as an active tumor, edema, and necrosis from normal tissues. Brain 
tumor segmentation approaches are primarily categorized into three 

approaches such as manual, semi-automatic, and fully automatic. These 
algorithms include Atlas, image analysis, machine learning, and hybrid 
algorithms [4–7].This segmentation process focuses chiefly on identi-
fying the whole tumor, tumor core, and enhanced tumor. Manual seg-
mentation approaches are tedious and have low accuracy and precision 
[8].There is a need fora robust and efficient automatic technique in 
segmentation. Convolution Neural Network (CNN), a class of deep 
learning neural networks, surpassed the results of traditional machine 
learning models like support vector machines (SVMs), decision trees, 
and random forests [9]. An automatic CNN called Fully Convolutional 
Networks (FCNs) [10],has been shown to minimize computational cost 
in generating tumor label maps. Inspired by FCNs, an efficient FCN 
named U-Net [11] was designed with a contracting path to capture 
context and a symmetric expanding path that enables precise localiza-
tion to do efficient segmentation of tumor core. 

Deep learning has a critical role in biomedical imaging and facilitates 
radiologists in better characterization and supports decision making. 
Also, this improves the diagnosis and treatment of patients. The deep 
learning-based U-Net [12] has remained seminal in the great trans-
formation of biomedical image segmentation efforts ever since. Radi-
ologists segment the tumor manually using anatomical and 
physiological information [13,14]. In semi-automatic methods [15–17], 
radiologists define the region of interest, adjust parameters to suit input 
images, use automatic algorithms to process, adjust the response 
depending on the feedback, evaluate the results, and repeat the process 
until the best results are achieved. In contrast, fully automatic methods 
are fast and perform better without the need for any manual interven-
tion [18–21]. An automatic 3D brain tumor segmentation [22,23] is 
proposed using a sequential U-Net architecture. The Brain Tumor Seg-
mentation model [24] performs with better accuracy when compared to 
traditional brain tumor segmentation algorithms. The Nearest-Neighbor 
resampling-based Elastic-Transformed (NNRET) CNN framework [25] 
was put forward to perform better segmentation in terms of accuracy 
over the classic U-Net Model. The Performance of classical U-Net is poor 
in the processing of complex images; therefore, the Half-Dense U-Net 
model [26] was proposed to locate the boundary of a brain tumor; this 
model outperformed when compared to Dense U-Net Model and ResNet. 

Recent trends show that researchers are mainly employing stacking 
networks to have higher accuracy in tumor detection despite having 
higher computational complexity [27–30].When the depth of the 
network increases, the excessive loss of information over the layers af-
fects the performance of the model. Another study [31] addressed the 
increase in the number of parameters and loss of information due to the 
increase in depth of the network, using the Stack Multi-Connection 
Simple Reducing Net (SMCSRNet) framework. This model overcomes 
the loss of information by including a series of bridge connections 
among the stacked cascade networks. SMCSRNet has outperformed 
stacked U-Net and achieved significant efficiency over other Deep 
Convolutional Neural Networks such as DenseNet or ResNet. Attention is 
required to notable values and for segmentation to get semantics, along 
with the focus on boundaries that require details. In order to resolve this 
predicament, one study [32] adopted 2D U-Net with denser skip con-
nections based on stride dilated convolution (SDC) to reduce resolution 
that preserves more details over samples of the BraTS2017 dataset. 
Authors [33] performed well over classical U-Net and included the 
extraction of global and local feature extraction paths, thereby 
improving the accuracy of segmentation on five tumor regions over a 
large BraTS2018 dataset [34] verified the performance of Group 
Normalization (GN), Instance Normalization (IN)in U-Net and observed 
that the accuracy of the model with GN is higher and yields better 
generalization. GN does not depend on batch size, it divides the se-
quences into various subgroups, and calculates the mean and variance. 
In the U-net model [35,36] employed dense blocks in place of skip 
connections at the encoder part and applied deep supervision at the 
decoder part, and achieved higher segmentation accuracy on the 
BraTS2018 data set [37] extracted dense feature information using 
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downsampling and propagated the spatial and location information of 
low-level features through up-sampling. Furthermore, integration of 
attention gates, AGResUNet, with residual modules in U- Net out-
performed both U-Net and ResNet. Inception residual modules were 
integrated with Dense U-net (DENSE-Inception U Net) [38] and evalu-
ated over different data sets. The model outperformed as compared with 
the state-of-the-art models. List of models used for Brain tumor seg-
mentation is tabulated in Table 1. 

As, spatial contextual information of 3D MR images is not fully 
considered by CNN, K. Hu et al., [39] proposed an efficient framework 
consists of fine segmentation that uses the MCCNN with fully connected 
CRFs for smoothing tumor edges and eliminating false positives. An 
efficient 3D residual neural network (ERV-Net) proposed in [40], to 
avoid degradation with fusion loss function to address the issues of 
network convergence, and data imbalance, has shown high efficiency 
compared to state of art methods. 

3. Proposed work 

From the literature, it is clear evident that the majority segmentation 
approaches were successful in handling HGG when compared to LGG. 
The internal structure of the LGG is simpler than that of the HGG, the 
segmentation of the LGG is considered more difficult because of its lower 
contrast and smaller size [14]. In general, LGG tumors have uniform 
intensity distribution across boundaries, and their lesion area is more 
distinguishable from T2 and flair modalities. Keeping in the view of 
above advantages, T2 and flair modal MRI images are intended for 
proposed model building. 

Fig. 1 shows the proposed MAC U-Net architecture in which the 
encoder extracts texture features and background information to detect 
tumor location. A structurally symmetric decoder is used to reconstruct 
or segment the tumor. 

A nonhomogeneous magnetic field or sensitive movement of the 
patient during acquisition results in non-uniform intensities, contrast 
differences, and noise in MRI scans. BraTS2018 images were acquired 
using multiple scanners from different sites/subjects with different 
clinical protocols, and they suffered from non-standardized intensity 
distributions. To remove these limitations, the N4ITK bias field correc-
tion algorithm was applied as a first step of preprocessing. To eliminate 
scanner variation, we adopted the Fuzzy C-means intensity normaliza-
tion technique. The objective function [41–45] of Fuzzy C-means is 
given by, 

J(U,V) =
∑c

k=1

∑n

i=1
uik

m‖Xi − Vk‖
2 (1)  

∑c

k=1

∑n

i=1
uik = 1 (2)  

where X denotes the set of data points, V denotes the set of centers, c 
denotes cluster count, N denotes the number of data points, Vk is a fuzzy 
cluster centroid of the kth cluster and m denote the weighting exponent. 
Accuracy can be improved by removing noise, adding spatial informa-
tion, and modifying the objective function of standard fuzzy c-means. 

3.1. Detection of full tumor using 9 layer attention gated U-Net 

Generally, radiologists use the FLAIR modality for segmenting 
edema, discriminate edema against ventricles/ fluid-filled structures, 
and T2 for edema extension. Furthermore, we applied FLAIR and T2 
modality samples as input to proposed architecture given in Fig. 2. 

The encoder block consists of two 3*3 convolutions subject to group 
normalization (GN) [46], followed by a ReLu and one 2*2 max-pooling 
layer with stride 2. For tumor recognition, an optimized feature map was 
formed by adjusting hyper-parameters [47], using a convolution layer 
with an input Row(R1) × Column(C1) × Dimension(D1). The hyper- 

Table 1 
Systematic Survey on Models used in Brain Tumor Segmentation.  

Ref Modal Type Methods Used: Data Set Performance 
Metrics 

[18] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

First order Features 
Extracted using 
Texture Analysis. 
Classification Using 
SVM 
CRF based 
Regularization 

Contra 
Cancrum 

Dice– 0.84 

[19] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

After the multi- 
sequence image has 
been pre-processed, 
voxel-wise features 
are extracted, 
followed by 
classification and 
sub sequent spatial 
regularization. 

Brats2013 Dice– 0.83 
Jaccard − 0.72 
PPV – 0.86 
Sensitivity – 
0.897 

[20] Single Channel 
- FLAIR 

Deep medic - 
Automatic detection 
and segmentation of 
brain metastases on 
multimodal MR 
images with a DCNN 

Customized 
data set 

Dice– 0.79 
Sensitivity 
–0.98 
False Positivity 
− 4.4 

[21] Single Channel 
- 
Independently 

Automatic brain 
tumor detection and 
segmentation using 
U-net based fully 
convolutional 
networks 

Brats2015 Dice– 0.86 
Sensitivity – 
0.65 

[23] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

Sequential 3D U-net 
with BN 

Brats2017 Dice– 0.883 

[24] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

Feature 
Recombination BN 

Brats2015 Dice– 0.90 
PPV –0.88 
Sensitivity 
− 0.93 

[25] Single Channel 
- 
Independently 

Nearest-neighbor 
Re-sampling-based 
Elastic- 
Transformation BN 

Brats2017 Dice Similarity 
Coefficient – 
0.8976 
Jaccard 
− 0.8869 

[31] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

A Stacked Multi- 
Connection Simple 
Reducing Net BN 

Brats2017 Dice Similarity 
Coefficient – 
0.83 
PPV – 0.789 
SCS – 0.90 

[32] Single Channel 
- 
Independently 

Enhanced U-Net Brats2017 Dice Similarity 
Coefficient – 
0.89 
Sensitivity – 
0.8592 
Specificity – 
0.9981 

[33] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

Modified U-Net that 
incorporates both 
global and local 
feature extraction 
paths 

Brats2018 Dice Similarity 
Coefficient – 
0.94 
Jaccard – 0.69 

[35] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

Multimodal Brain 
Tumour 
Segmentation using 
Densely Connected 
3D CNN 

Brats2018 Dice Similarity 
Coefficient – 
0.87 

[37] Multi-Channel 
T1, T1CE, T2, 
FLAIR 

Attention Gate 
ResU-Net BN 

Brats2017 
Brats2018 
Brats2019 

Dice– 0.872 
Haussdroff95 – 
6.87 
Dice– 0.872 
Haussdroff95 – 
5.62 
Dice– 0.87  
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Fig. 1. Proposed MAC U-Net architecture for brain tumor segmentation.  

Fig. 2. 9-Layer Attention gated U-Net architecture for full tumor segmentation.  

Fig. 3. Architecture of the self-attention module.  
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parameter of feature maps, like several filters (K), size of the filter (F), 
stride (S) with zero paddings (P) are calculated using the following 
equations [48]: 

Width =
R1 − F + 2P

S
+ 1 (3)  

Height =
C1 − F + 2P

S
+ 1 (4)  

Dim = F (5) 

The filters are convolved with an input image that results in feature 
maps: 

Out =
∑n

k=0
(FilterWeight*Input)+ bias (6) 

In general, average pooling smoothens the image, but failed to 
extract the sharp features. Max pooling well suits for the extraction of 
the bright features from the dark background. But both these pooling 
approaches could not be able to hold down sampling’s unique charac-
teristics. Segmentation of small-scale tumor need the minimum feature 
loss during the down-sampling. In this work, authors supplemented the 
model with reduced feature loss by concatenating the feature maps of 
both “maximum” and “average” pooling. The weights in the pooling 
kernel are adaptively computed based on the input MR images or feature 
maps to extract more useful features during down-sampling and enhance 
the segmentation (See Fig. 3). 

3.1.1. Exploiting channel dependencies using group normalization 
Keeping in the view of memory constraints and to realize optimized 

performance, the proposed model was built with minimal batch size. 
But, batch normalization with lower batch size tends to incorrect esti-
mation of batch statistics [10,49] and presents detrimental impact on 
performance of DNN [46,50,51]. To realize the limitations such as lower 
training error, easy optimization, authors adopted Group Normalization 
[50,52,53] to normalize the features within each group and which is 
independent of batch sizes and presented the stable performance. To 
apprehend the regularization ability of the group normalization, L2 
regularizer is used in the model building. Pre-processing plays a vital 
role in deep learning, and which address the effect of imbalanced gra-
dients leads to slow learning. In the model building, the weights are 
adjusted using stochastic gradient descent to avoid imbalance. The 
output of the activation function is normalized after each layer. The 
activation function’s normalized output is sent to the next layer. The 
feature map of a layer x and index i = (iN, iC, iH, iW), where N is the batch 
axis, C is the channel axis, H is spatial height, and W is the spatial width. 

x̂i =
xi − μi

σi
(7)  

Si = {k|kC = iC} (8)  

μi =
1
m
∑

k∈Si

xk (9)  

σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑

k∈Si

(xk − μi)
2
+ ∊

√

(10)  

yi = γx̂i + β (11) 

In GN, with the help of G (hyper-parameter), the number of layers 
(set to 32 in this work), C denotes the number of channels per group, and 
computes μ and σ in a set Si defined by Eqs. (7)–(10): 

Si = {k|(kN = iN , ⌊kC*G/C⌋ = ⌊iC*G/C⌋)} (12) 

For faster convergence, Rectified Linear Unit (ReLU) is employed as 
an element-wise activation function: 

R(z) = Max(0, z), forz > 0 (13) 

To reduce complexity and to control overfitting, we used a pooling 
layer with stride 2, in order to minimize the number of training pa-
rameters [53]. The input volume having a width (W1), height (H1), and 
dimension (D1) produce a volume of size with width (W2), height (H2), 
and dimension (D2): 

W2 =
W1 − F

S
+ 1 (14)  

H2 =
H1 − F

S
+ 1 (15)  

D2 = D1 (16) 

Softmax was used as an activation function for classification: 

S(yi) =
eyi

∑
jeyj

(17)  

3.1.2. Attention based salient feature extraction in tumor segmentation: 
The attention gate (AG) [55–58] was implemented in the decoder 

block for extracting salient features, to minimize usage of computational 
resources, to reduce the impact of noise, ambiguous, and irrelevant 
features. In this model, skip connections of the up-sampling path are 
combined with downsampling path spatial information using soft 
attention that reduces redundant features [58]. The major component of 
a transformer is the unit of the multi-head self-attention mechanism. The 
encoded input is a set of key-value pairs (K, V), and preceded output is a 
query (Q) in the view of a transformer. The next output is produced by 
the mapping query and the set of key-value pairs. 

The scaled dot product is adopted by the transformer during the 
down-sampling of the neural network. After ′l′ layers, the convolution 
feature map is xl. The feature map is then branched into K, Q, and V, 
were. 

Key : f (x) = Wf x (18)  

Query : g(x) = Wgx (19)  

Value : h(x) = Whx (20) 

Then, the dot-product attention leads to the self-attention feature 
maps: 

∝i,j = softmax
(
f (xi)

T g
(
xj
) )

(21)  

Oj =
∑N

i=1
∝i,jh(xi) (22) 

∝i,j: entry in attention map, denotes the attention of i th position 
synthesized at thej th location. Wf ,Wg, andWh are 1*1 convolution fil-
ters. The output Oj is a column vector of final output and is multiplied 
with parameter γ and added to the original input feature map xi.

y = xi + γOi (23) 

For the better segmentation, residual block features of small tumors 
are combined with feature maps of the succeeding layer. The doubled 
spatial dimension with bilinear interpolation is concatenated with an 
output feature map of the attention gate and a 3*3 convolution. At each 
level in the decoder, the features are minimized by a factor of two and 
double the dimension of images. At the end of the decoder, output has 
the same spatial image dimension as the input image and followed by 
1*1 convolution producing a binary prediction of the full tumor 
segmented image. 

The encoder block is applied on 240*240 images and downgraded to 
15*15; the feature maps are increased from 64 to 1024. As the tumor 
core is inside of edema and the enhancing tumor is part of the tumor 

S. Koteswara Rao Chinnam et al.                                                                                                                                                                                                           



Biomedical Signal Processing and Control 78 (2022) 103907

6

Fig. 4. Size-based full tumor segmentation scenarios on T1CE slices.  

Fig. 5. 7-Layer Attention gated U-Net Architecture for segmentation of Tumor Core and Enhanced Tumor.  

S. Koteswara Rao Chinnam et al.                                                                                                                                                                                                           



Biomedical Signal Processing and Control 78 (2022) 103907

7

core, it is very small in terms of the number of pixels. Further, center 
point of full tumor will help in prediction of tumor core and enhanced 
tumor. The cropping of T1CE will be done based on the size of full tumor 
and even crop the overlap part to do data-augmentation by fixing the 
cropping size to 64x64. T1CE will be cropped into one or two or four 
64*64 patches using the center of the tumor as shown in Fig. 4. 

3.2. 7-Layer attention gated U-Net for segmentation of tumor core and 
enhanced tumor 

Fig. 5 shows a 7-Layer Attention gated U-Net Architecture for seg-
mentation of Tumor Core and Enhanced Tumor. 

If the size of a tumor is of width or W < 64 and length or L < 64 

Fig. 6. Segmentation results of proposed method on BraTS18 MRI scans for full, core, & enhanced. a & b: No Tumor slices; c & d Segmentation of small size tumor 
with w < 64 & l < 64. e, f, g & h: Segmentation of varied length & width tumor slices. 
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(Fig. 6c & d), using the centroid of the full tumor, T1CE is cropped into 
one patch. If W > 64 and L < 64 or W < 64 and L > 64 then T1CE will be 
cropped into two 64X64 patches (Fig. 6e & f), else it will be cropped into 
four patches of each size 64X64 (Fig. 6g & h). These cropped sections are 
used as input to the 7-layer AG U Net architecture to predict the tumor 
type. Furthermore, predicted full tumor, predicted tumor core and 
predicted enhanced tumor core are fused at the center point of the full 
tumor to estimate the final segmented tumor, as depicted in Fig. 6. 

4. Results and discussions 

The proposed multi-class segmentation approach was evaluated on 
the BraTS2018 dataset using Dice coefficient and IoU metrics to deter-
mine non-enhancing and enhancing tumor regions. The experiment was 
conducted using the Keras framework using TensorFlow-GPU on a 64 GB 
Machine: Intel® Xenon® Platinum 8276 CPU with 2.20 GHz processor 
equipped with NVIDIA GRID V100D-4Q Graphics card. The performance 
of the proposed model was compared with four different models to 
ascertain its accuracy. 

4.1. About dataset 

The BraTS2018 dataset [30,44,45] provided by the Medical Image 
Computing and Computer-Assisted Intervention Society (MICCAI) is a 
collection of skull-stripped co-registered MRI volumes with an isotropic 
resolution. BraTS2018 dataset contains skull stripped 210 HGG, 75 LGG 
MR Scanned subjects for training, and 66 MR scanned subjects for per-
formance evaluation. BraTS2019 dataset comprises of 259 HGG, 76 LGG 
MR scanned subjects for training, and 125 subjects for testing. 
BraTS2020 dataset [30,44,45] comprises of 369 subjects for Training 
and 125 subjects for Testing. Subjects are manually labeled ground 
truths (L0: Healthy Tissues, L1: Necrosis and Non-Enhancing Tumor, L2: 
Edema, L4: Enhancing Tumor) of the training dataset. Each MR Scan has 
four modalities: T1, T1CE, T2, and FLAIR. All modalities are registered 
together with T1CE to homogenize the data and are resampled to 1 mm 
isotropic pixel resolution on a normalized axis using a linear interpolator 
[30–37]. The BraTS2018 dataset also suffers from a class imbalance of 
MRI volumes, since most of the pixels/ slices within the dataset pertain 
to a healthy area and very few slices belong to tumors. Hyper parameters 
of proposed model are presented in Table 2. 

4.2. Performance evaluation metrics 

The Dice Similarity Coefficient (DSC) and Jaccard Similarity Index 
(JSI / IoU) were employed to validate the different labels of tumor re-
gion, where TP corresponds to pixels corresponding to the Total Tumor 
Region, TN: All healthy tissue pixels, FN: Abnormal tissue pixels i.e., 
pixels that are not classified by defined model and FP: pixels that are 
incorrectly classified as a tumor. JSI (i.e., Intersection over Union) 
measures similarity. JSI / IoU always lies between 1 and 0. The larger 
value represents more accuracy of segmentation. Modified Hausdorff 

Distance represents adjacency between pixels [44–62]. 

Dice Similarity Coefficient (DSC) =
2TP

FN + FP + 2TP
(24)  

Jaccard Similarity Index (JSI) =
TP

TP + FN + FP
(25)  

Sensitivity =
TP

TP + FN
(26)  

Specificity =
TN

TN + FP
(27)  

Accuracy =
TP + TN

TP + FP + FN + TN
(28)  

where TP denotes True Positives, FP demotes False Positives, TN denotes 
True Negatives, and FN indicates False Negatives. 

In this study, the authors experimented on BraTS 2018 training 
dataset with the random split of 80% of data for model building and the 
remaining 20% for model validation. As per the clinicians’ suggestion, 
authors have considered the slices from 50 to 130 out of 155 for each 
subject. From BraTS 2018 dataset, 3360 HGG and 1200 LGG samples are 
used for the model building. Experimentation was performed in four 
sections with Multi channel cascaded U-Net with Batch Normalization, 
Multi-Channel cascaded U-Net with Group normalization, Multi-channel 
Attention-gated cascaded U-Net with Batch Normalization, and Multi- 
Channel Attention-gated cascaded U-Net with Group normalization. 
Multi-channel Attention-gated cascaded U-Net with group normaliza-
tion showed better results when compared with other models for Full, 
Core, and Enhanced Tumor in terms of performance evaluation metrics 
such as accuracy, sensitivity, specificity, DSC and IoU. Authors explored 
the experimentation with various loss functions such as Adam, RMSProp 
and SGD, from the experimentation it is clearly notified that the per-
formance of Adam is good when compared to other at 0.0001 learning 
rate. To realize the regularization ability model was built with L2 
Regularizer. 

4.3. The performance evaluation of various models: 

Performance evaluation of proposed Multi channel cascaded U-Net 
with various attention mechanisms on Brats 2018 data set is presented in 
Table 3. The proposed model with Self-attention performed better in 
comparison over other attention mechanisms in segmenting Full tumour 
and Tumour core, and Enhanced tumour (See Table 4). 

In the segmentation of High-grade tumors, basic U-Net (9 Layer 
model) yielded dice similarity coefficient as 86.34, 75.65 and 72.82 and 
IoU as 76.87, 66.46, 61.18 for Full tumor, Tumor Core and Enhancing 
Tumor respectively. Basic U-Net suffers more, in segmenting low grade 
gliomas due to its small in size. 

To realize better performance, channel dependencies are preserved 
by replacing Batch Normalization with Group Normalization. Further U- 
Net 9-layer architecture is stacked with U-Net 7-layer architecture to 
emphasize more on segmenting varied tumor sizes as Multi-Channel 

Table 2 
List of Hyper parameters.  

Models 9 Layer U-Net, 7 Layer U-Net 

Data Set BraTS 2018, BraTS 2019, BraTS 2020 
image size 240 * 240 
Normalization 

Techniques 
N4 Bias Field Correction, Fuzzy C-Means, Batch, and 
Group Normalization 

Batch Size 8 for Batch Normalization, 1 for Group Normalization 
No of epochs 30 
Optimizers Adam, SGD and RMSProp 
Regularizer L2 
Learning Rate 0.0001 
loss function Dice Coefficient 
Metrics Dice, IoU, Sensitivity, Specificity, and Accuracy  

Table 3 
Performance evaluation of proposed model with various attention mechanisms 
on Brats2018.  

attention type DSC 

Whole Core ET 

Additive Attention [57]  87.2  76.2 76.6 
Multiplicative Attention [58]  87.23  78.3 77.2 
Multi Headed Attention [59]  92.6  81.7 78.2 
Channel Attention [63]  88.9  79.9 78 
Spatial Attention [64,65]  89.6  80.3 79 
Self-Attention [66]  94.47  84.12 82.72  
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Table 4 
Performance evaluation of proposed architectures with various Normalization Techniques.  

Data Set Grade Model DICE IOU SENSIVITY SPECIFICITY ACCURACY 

CT TC ET CT TC ET CT TC ET CT TC ET CT TC ET 

2018 HGG U Net  86.34  75.65 72.82  76.87  66.46  61.18  89.34  82.24  81.11  99.2  91.87  89.93  78.6 75 73.18 
LGG  64.87  62.49 62.05  60.85  59.49  58.22  85.42  76.35  75.45  98.5  88.67  86.43  78.5 73.5 71.08 
HGG U Net + GN  88.1  80.28 76.25  78.28  67.58  61.87  89.41  83.14  82.28  99.4  92.45  89.89  82.5 77.5 74.71 
LGG  65.11  63.76 63.57  62.08  60.57  59.96  88.05  80.82  81.47  99.5  88.9  87.27  80.41 73.75 72.91 
HGG MCC U Net + BN  88.4  81.39 76.57  79.21  68.62  62.04  89.72  83.22  83.12  99.64  92.76  90.14  90.24 80.15 76.25 
LGG  67.43  64.26 64.32  62.87  61.54  61.03  88.69  81.53  81.87  99.01  89.13  88.23  89.5 79.25 74.92 
HGG MCC U Net + GN  88.64  82.21 76.88  79.6  69.8  62.44  92.29  88.42  82.61  99.47  93.49  91.3  91.64 83.72 77.95 
LGG  78.12  75.98 73.31  77.94  68.13  61.95  90.19  82.62  82.71  99.63  90.39  89.94  89.92 81.34 75 
HGG MAC U Net + BN  92.41  83.49 80.15  84.17  71.32  65.14  92.45  89.84  82.84  99.02  93.52  91.43  91.89 84.73 78.01 
LGG  83.18  76.4 73.33  83.36  70.96  62.66  90.68  84.43  80.92  98.56  91.8  90.23  89.8 82.69 76.83 
HGG MAC U-Net þ GN  94.47  84.12 82.72  89.54  77.83  67.68  93.05  89.9  83.1  99.2  93.44  92.34  92.14 87.63 77.64 
LGG  85.71  78.85 74.16  84.85  71.32  66.33  91.16  84.12  80.86  98.83  92.56  90.87  90.1 84.31 75.53  

2019 HGG U Net  85.56  75.02 70.18  74.18  65.6  60.83  88.4  81.46  80.65  99.1  90.7  87.31  78.16 75.15 74.81 
LGG  64.07  61.91 60.15  60.5  59.35  58.02  84.22  75.15  75.5  97.13  88.16  86.3  77.92 73.43 72.69 
HGG U Net + GN  88.39  80.59 76.5  77.37  68.2  61.4  89.12  82.28  81.69  99.11  92.16  88.47  81.19 76.93 75.7 
LGG  66.63  64.42 64.73  63.6  61.15  60.09  88.31  81.2  81.54  97.77  89.19  86.91  81.39 74.77 73.49 
HGG MCC U Net + BN  88.45  80.69 76.72  79.43  68.7  62.3  89.81  82.1  81.63  99.27  92.48  89.31  85.19 80.38 76.09 
LGG  69.31  65.52 66.02  63.66  62.04  61.91  88.09  81.63  81.87  98.2  89.63  87.29  84.22 77.86 74.89 
HGG MCC U Net + GN  88.56  80.84 77  81.12  69.04  62.43  89.89  86.2  81.76  99.33  92.64  89.41  87.27 82.19 77.13 
LGG  76.62  72.18 70.86  78.38  66.72  62.44  88.1  81.76  81.91  98.88  90.19  88.28  86.12 79.31 75.13 
HGG MAC U Net + BN  92.86  83.09 81.85  85.69  72.56  66.46  94.15  89.9  83.04  99.2  93.81  91.19  92.07 86.13 78.1 
LGG  85.18  77.74 74.93  83.8  71.49  63.94  91.77  84.93  81.92  99.1  92.34  90.9  90.48 83.09 77.3 
HGG MAC U-Net þ GN  94.75  84.23 82.84  86.49  74.42  68.81  95.13  89.87  84.72  99.6  94.57  93.09  92.75 88.33 78.47 
LGG  86.56  80.85 75.83  85.22  72.41  66.02  93.86  86.42  83.71  99.18  93.65  91.94  91.84 85.81 77.93  

2020 ALL U Net  82.62  72.71 68.37  72.47  64.26  61.23  84.53  82.62  78.36  97.6  90.17  89.63  80.51 77.76 73.58 
ALL U Net + GN  83.14  73.28 69.48  74.39  64.79  62.38  85.73  83.05  78.86  97.68  91.42  90.16  81.43 78.36 74.08 
ALL MCC U Net + BN  83.47  73.91 70.72  75.83  65.18  62.43  86.22  82.43  79.17  98.28  92.67  90.93  82.68 79.05 74.46 
ALL MCC U Net + GN  83.9  76.25 74.63  77.41  67.69  62.58  88.96  83.77  80.58  98.8  93.28  91.59  86.5 81.27 74.83 
ALL MAC U Net + BN  89.28  82.7 80.18  82.26  72.7  66.54  92.82  88.64  83.13  99.39  94.45  92.88  90.91 85.27 77.19 
ALL MAC U-Net þ GN  90.45  84.3 82.16  86.59  74.38  68.45  94.73  89.4  84.68  99.3  94.4  92.7  91.49 86.29 78.58  
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Cascaded U Net Architecture. This multi-channel cascaded U-Net with 
BN improved the performance by 0.24, 0.82,0.31 and 0.39,1.18,0.4 for 
both Dice and IoU for segmentation of CT, TC and ET respectively. To 
reduce the computational complexity, attention mechanism is inte-
grated with cascaded U-Net, that improved the dice performance by 
3.77, 1.28, 3.27, and IoU performance by 4.57, 1.52, 2.7 respectively. 
Further, to take more advantage, for the segmentation of various tumors 
is boosted with the proposed MAC U Net and its DSC and IoU values are 
94.47, 84.12, 82.72, and 89.54, 77.83, 67.68 respectively. 

U-Net 9 Layer model has given 85.56, 75.02 and 70.18 of dice score 
on HGG and 64.07, 61.9, and 60.15 of dice score on LGG of BraTs 2019 
dataset in the segmentation of Complete Tumor, Tumor Core and 
Enhancing Tumors respectively. Further, proposed method with Batch 
Normalization is evaluated on 2019 dataset and achieved 76.62, 72.18 
and 70.86 in the segmentation of CT, TC and ET respectively on Low 
Grade Gliomas. The proposed work is evaluated on BraTS 2019 dataset 
and yielded dice scores of 94.75, 84.23, 82.84 and 86.56, 80.85, 75.83 
on the segmentation of Full tumor, Tumor Core and Enhancing Tumor of 
HGG and LGG respectively. IoU coefficients of Full tumor, Tumor Core 
and Enhancing tumor of the proposed work on HGG and LGG as 86.49, 
74.42, 68.81 and 85.22, 72.41, 66.02 respectively. From the results, the 
model has presented consistent results in the segmentation of small- 
scale gliomas also. The proposed model is also evaluated on 127 sub-
jects of BraTS 2020 test dataset and achieved dice coefficient values as 
90.45, 84.3, and 82.16 on segmentation of Complete Tumor, Tumor 
Core and Enhancing Tumors respectively. The proposed model has 
evaluated without Attention gate, and yielded the dice score as 83.9, 
76.25 and 74.63 in the segmentation of Complete Tumor, Tumor Core 
and Enhancing Tumors respectively and it was presenting 6–7% better 
performance in the segmentation of Tumor Core and Enhancing Tumor 
with U-Net 9 Layer Architecture. The proposed model with Batch 
Normalization has realized 89.28, 82.7 and 80.18 of dice score in the 
segmentation of Complete Tumor, Tumor Core and Enhancing Tumors 

respectively. The comparative analysis clearly points out the need for 
Attention mechanism and Group Normalization in the segmentation of 
Tumor Core and Enhancing Tumor. From Fig. 7 it is clearly evident that 
the proposed model has presented higher accuracy in the segmentation 
of Complete Tumor, Tumor core and enhanced tumor. 

The Res U-Net with BN [37] achieved 87, 80.23, and 76, dice coef-
ficient values for the segmentation of Full, Core, and Enhancing Tumor 
on BraTs 2018 dataset respectively. K. Hu et al., [39] proposed Multi- 
Channel Cascaded Neural Network and conditional random fields with 
all four modalities and achieved a dice score of 88.24, 74.81 and 71.78 
in the segmentation of CT, TC and ET respectively. C.Zhou et al., pro-
posed a One Pass Multitask network and achieved the dice score of 
88.42, 79.6, and 77.75 in the segmentation of CT, TC and ET respec-
tively. M. Ghaffari et al., proposed Densely connected 3D CNN and 
achieved a dice score of 87, 66, and 79 in the segmentation of CT, TC and 

Fig. 7. Performance analysis of proposed method on various tumors.  

Table 5 
Performance Comparison of the proposed framework with existing frameworks.  

Dataset Framework DSC 

WT TC ET 

BraTs 18 Res U-Net [37] 87 80.2 76 
AG Res U-Net [37] 87.2 80.8 77.2 
MCCN + CRF’s[39] 88.24 74.81 71.78 
OM-Net[70] 88.42 79.6 77.75 
Multi Model 3D U-Net [35] 87 66 79 
Proposed MAC U-Net + GN 94.47 84.12 82.72  

BraTs 20 3D-U-Net [67] 81 82 77 
Two Stage VAE using AG [68] 90.41 83.5 79.58 
Self-ensemble deeply supervised 3D-U Net 
[69] 

88.59 84.27 78.5 

ME-Net [71] 88.3 73.9 70.2 
Proposed MAC U-Net + GN 90.45 84.3 82.16  
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ET respectively. 
Attention gated Res U-Net also presented a similar performance but 

outperformed Res U Net in the segmentation of Enhancing Tumor. 3D U 
Net [67] shown higher accuracy in the segmentation of Tumor core. Two 
stage variation auto encoders with Attention Gate [68] has yielded the 
dice values of 90.41, 83.5 and 79.58 on Full, Core, and Enhancing 
Tumor respectively. In addition, the proposed model achieved 94.47, 
84.12, and 82.72 as segmentation of Full, Core, and Enhancing Tumor 
respectively. Further Self Ensemble Deeply Supervised 3D U Net [69] 
yielded the dice values of 89, 84 and 79 on Full, Tumor core and 
Enhancing Tumor respectively. Our proposed approach showed consis-
tent performance on Tumor Core and Enhanced Tumor and out-
performed whole tumor with 94.47 when compared to [69]. Z. Wenbo 
et.al., proposed ME Net for the segmentation of CT, TC and ET types 
and achieved the dice score as 88.3, 73.9, and 70.2 respectively. The 
performance of the proposed method is compared with other state of art 
methods is tabulated in Table 5. 

This study explored the usage of GN over BN in the case of small 
batches due to memory constraints. To address the irrelevant and noisy 
features and to give attention to relevant features, we employed a series 
of attention gates in skip connections of U-Net architecture at up- 
sampling and replaced BN with GN to take care of gradient imbalance 
at each epoch. Our model outperforms basic U-Net, AG U-Net with BN 
and ResU-Net, AG ResU-Net, 3D U-Net, Two Stage VAE using Attention 
gate and Self ensemble deeply supervised 3D U-Net in the detection of 
various tumors. 

5. Conclusion 

The existing deep learning models have limited ability to automati-
cally detect and segment low-grade tumors from edema using MRI im-
aging sequences. In this work, a novel Attention Gate-based cascaded U- 
Net ensemble framework was proposed to segment early-stage low- 
grade brain tumor substructures. The effectiveness of group normali-
zation with attention gate was also explored with skip connections to 
segment small-scale brain tumors using highlighted salient feature in-
formation. Experimental outcomes of the proposed work outperform 
baseline U-nets on the BraTS 2018, BraTS 2019 and BraTS 2020 data-
sets. Overall, the proposed model of MAC U-Net achieves superior per-
formance over typical brain tumor segmentation methods. In the future 
scope, we aimed to propose a 3D model with an appropriate combina-
tion of attention mechanisms in brain tumor segmentation to realize 
better segmentation accuracy. 
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