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Abstract
The identification of diseases in plants contributes an important role in captivating disease 
control methods for the improvement of quality and quantity of crop yield. Mango trees 
are affected by different diseases and the identification of diseases is a tedious task till now 
when those diseases are manually detected. This paper proposes the novel hybrid Coyote 
Grey Wolf optimization (CO-GWO) algorithm for the classification of mango leaves as 
normal or diseased. The classification process is done through the extraction of signifi-
cant features from the segmented image. The Neural network (NN) classifier performs the 
classification task, with the weights being adjusted using the proposed algorithm that acts 
a major role in the enhancement of the classification accuracy. The effectiveness of the 
proposed model is evaluated concerning the evaluation metrics, namely accuracy, preci-
sion, recall, and F1 measure, and is attained to be 96.7111%, 97.5712%, 97.1504%, and 
96.4792%, respectively. This shows the superiority of the proposed technique in the effec-
tive classification of mango leaf classification as compared with the existing techniques.
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1 Introduction

Plant diseases are the primary cause of agricultural output quality and quantity losses all 
over the world. These losses have a negative impact on the costs of production and incomes 
of all agricultural stakeholders [1]. However, equipment is scarce for quick and reliable 
identification. If an epidemic strikes, the well-being and livelihood of farmers, as well 
as the country’s food supply and nutritional security, are all at risk [2]. Mango trees are 
important for biodiversity and provide a variety of fruits. Mango is a popular fruit crop 
in India, and it contributes significantly to the country’s economy [3]. With 13.79 million 
tons of wheat produced, India produces roughly half of the world’s wheat [4]. As a result, 
global awareness of mango plant cultivation as a means of increasing fruit output through 
sustainable agricultural practices is expanding [5]. Mango plant disease, on the other hand, 
is a major hindrance to growing enough fruits to meet public demand [6]. Mango malfor-
mation disease, Anthracnose, Bacterial flower disease, Golmachi, Moricha disease, Shuti-
mold, Bacterial black spot, Apical bud necrosis, Red rust, Lichens, Powdery mildew, Root 
rot and damping off, Ganoderma root rot are just a few of the illnesses that can damage 
mango plants [7].

Pathogens, such as bacteria, viruses, fungi, parasites, and even unfavorable environmen-
tal circumstances can cause such diseases [8]. The photosynthetic process is impaired by 
leaf disease, which results in plant death. The type of disease is determined by the symp-
toms and the afflicted leaf area. Identifying plant illnesses used to be done by farming spe-
cialists for checking plants regularly. Small farms have an easier time identifying illnesses 
and taking urgent preventative management actions [9]. However, it is time intensive and 
costly in the case of large farms. It is critical to identify illnesses in the early stages because 
early detection of plant diseases allows us to minimize damage, lower production costs, 
and increase revenue [10]. Many times, human intelligence alone is ineffective in identify-
ing the exact ailment. Farmers used to follow specialists’ observations of diseased plants, 
or experts would come to the farm and provide advice to the farmers, who would then take 
the required precautions to safeguard the plant from disease [11]. Finding a reliable expert 
becomes tough, and the approach does not function well for big sectors; in addition, such 
a procedure normally takes a long time. This strategy is also costly because it necessitates 
ongoing monitoring for accurate and prompt farm identification.

As a result, illness detection methods that are quick, automatic, low-cost, and accu-
rate are needed. Diseases in agricultural goods are caused mostly by two types of organ-
isms: live and nonliving. Bacteria, insects, fungi, and various viruses are living agents, 
whereas non-living agents include excess wetness, temperature changes, fewer nutrients, 
insufficient lighting, and various contaminants [12]. Many applications for leaf identifi-
cation, lead disease detection, fruit disease detection, and other agricultural applications 
have been developed [11]. As a result, finding an autonomous, accurate, rapid, and less 
expensive plant disease identification technique is critical [13]. Artificial intelligence 
includes machine learning as a subset. It focuses on system design, learning, and predic-
tion based on previous experience. Data collection begins the learning process, com-
parable to personal experience, to look for data trends. Machine learning-based tech-
niques have recently been utilized to detect disease in plants, where photos are taken 
and processed to acquire the data needed for analysis. Several recent techniques related 
to mango leaf disease classification include Ensemble Stacked Deep Neural Network 
(ESDNN) [14], Hybrid Deep Learning with Support Vector Machine (HDL-SVM) 
[15], Optimized Recurrent Neural Network (ORNN) [16], Lightweight Convolutional 
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Neural Network (LCNN) [17], Deep Convolutional Generative Adversarial Networks 
(DCGAN) [18], Convolutional Neural Network (CNN) [19], etc., are developed to pre-
dict the mango leaf infection accurately. However, these state-of-art approaches are 
effective in predicting leaf diseases and their reliability depends on the quality and 
quantity of the training database. Moreover, these techniques face issues like overfit-
ting, model complexity, and lack of generalization capacity. Hence, a novel hybrid CO-
GWO was proposed in this article to overcome the issues and challenges in the existing 
techniques.

The basic idea behind this research is to provide an acceptable and effective approach 
for classifying the mango leaf disease, as well as to encourage the use of appropriate mech-
anisms for finding early and cost-efficient solutions to the problem. Computer vision and 
deep learning processes have been prominent in the classification of numerous fungal ill-
nesses due to their superior computation and accuracy. As a consequence, this paper intro-
duces a hybrid optimization algorithm, named CO-GWO algorithm for the classification of 
mango leaf disease. The classification of mango leaf disease is done through the NN classi-
fier, the weights of which are optimally tuned using the proposed CO-GWO algorithm. The 
significant features, such as Local Binary pattern (LBP), Local Directional Pattern (LDP), 
and Local optimal-oriented pattern (LOOP) are extracted from the pre-processed image to 
make the classification process effectual. This research provides a detailed elucidation of 
the proposed model, and with the results, the efficacy of the proposed classification model 
can be validated. In addition, a comprehensive analysis is provided based on the perfor-
mance of conventional classification strategies to analyze the superiority of the proposed 
method of mango leaf classification.

1.1  The important contribution of the article is

• The proposed method creates an automated strategy, named novel hybrid CO-GWO-
NN for the recognition of the disease in mango leaves.

• This proposed study gives enhanced accuracy for making a deep observation over dif-
ferent models of NN.

• The accuracy of the proposed model is good enough as compared to other methods due 
to the implementation of transfer learning over the classes.

• This proposed model is exposed in such an effective way that makes it more competi-
tive than the conventional models of mango leaf disease classification.

The remaining of this paper is organized as follows: Section 2 presents the survey of the 
recent strategies of mango leaf disease classification with the challenges associated with 
them. Section  3 describes the architecture of the NN model and the implementation of 
mango leaf disease identification using the proposed CO-GWO-NN model, followed by the 
results of this work in Section 4. Section 5 deals with the conclusion.

2  Motivation for the research

This section deliberates the survey of the conventional methods of mango leaf disease clas-
sification with their challenges in detail.
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2.1  Literature survey

The methods for performing disease classification in mango leaves described in this 
part are as follows: Rasel Mia et al. [20] introduced a Neural Network Ensemble (NNE) 
for Mango Leaf Disease Recognition (MLDR). The goal of this study was to employ 
machine learning to detect indications of plant diseases faster than a manual monitoring 
system. It would also save time to diagnose disease using a machine rather than the old 
method, which would aid in the proper treatment of mango leaf disease. However, tex-
turing and color characteristics are ignored, which has an impact on recognition accu-
racy. Arivazhagan and VinethLigi [21] devised a deep learning-based method for detect-
ing leaf illnesses in Mango plant species. The model got better at detecting leaf diseases 
in mango trees, indicating that it may be utilized in real-time applications. Finding the 
appropriate parameters for a CNN model, on the other hand, is still a research topic. 
Ray AdderleyJmGining et al. [22] wanted to use image processing to create a recogni-
tion system that could detect the presence of illness in mango leaves. With a better level 
of precision, the system accurately detects and diagnoses the condition. The collected 
image may be too complex for the system to analyze, especially during the segmentation 
step, if the camera was not properly positioned.

Through the CNN approach, Aditya Raj Bongshi et al. [23] concentrated on categoriz-
ing and differentiating the illnesses of mango leaves. The findings of this study showed that 
using a CNN to generate illness-differentiating proof from an image is a good technique 
for high-accuracy automated mango disease distinguishing verification. The method, on 
the other hand, does not focus on additional diseases and must be improved to perform 
such tasks. SanathRao et al. [24] used a dataset of 8,438 photos of damaged and healthy 
leaves gathered from the Plant Village dataset and captured locally to detect and diagnose 
Mango leaf illnesses. Even though deep learning is a popular model for detecting diseases, 
further improvement is required due to specific restrictions in the field of research. Rabia 
Saleem et al. [10] developed a new segmentation strategy for segmenting the diseased part 
with the consideration of the vein model of the leaf, from which the classification pro-
cess is executed using the Support vector machine (SVM) classifier. The model was very 
useful to mango plant growers for the appropriate and timely identification and recogni-
tion of diseases. However, the model was capable to work only for less data in the dataset. 
Rama Koteswara Rao and Swathi [25] employed an SVM algorithm to detect the disease 
of mango leaves. The developed system was excellent in computation and simple, but for 
large fields the procedure is time-consuming.

2.2  Challenges

The challenges possessed by the techniques of mango leaf disease classification are enlisted 
below:

• Automated identification of diseases in mango plant leaves is still a dispute as disease 
detection by manual means is not a practicable option in this automated era because of 
its increased cost and the non-availability of mango specialists and the changes in the 
indications [10].

• Many sophisticated technologies in modern agricultural models are developed to work 
constantly and need human involvement or regular screening to avoid errors. Not only 
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the devices are costly, but also possess an inadequate range of applications and adapt-
ability in use [26].

• It is difficult to establish appropriate parameters in SVM if the training data is not lin-
early separable, which is one of its shortcomings [20].

• The perception and hand method looks less proficient as it uses more time, and the 
farmers may ignore some leaves that are previously affected and fail at the right time to 
prevent and take care of them [22].

3  Proposed model of disease classification in mango leaf

The detection of diseases in leaves has been a long research area for the past few dec-
ades. Classification of mango plant disease by its leaf observation is dependent on cost of 
the crop loss and plant populations. The method must be cost-effective and user-friendly, 
and one must possess the basic biological procedures of the plant. This is also used in the 
evaluation of crop cover, biocides, biosecurity, and claims. Image processing acts as one of 
the low-priced methods to recognize the disease using the RGB feature [23]. It is used to 
enumerate the diseased area, size, and nature of the leaves and also to find the edges of the 
affected area.

A novel hybrid optimization tuned NN model is proposed in this paper to classify the 
mango plant leaf diseases. The schematic depiction of the proposed model is depicted in 
Fig. 1. In the initial step, the leaf images are extracted from the dataset, and the extracted 

Input Mango leaf 
image

Pre-processing data
Background 
subtraction

Image segmentation 
Region-based 
segmentation

Feature extraction

NN Classifier

Normal/Infected leaf

Edge detection 
method

Edge detection

CO-GWO 
Algorithm

Fig. 1  Block diagram of a proposed classification model
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images are subjected to pre-processing for removing the background of the input image. 
Then, the proposed hybrid optimization tuned NN model involves in the classification pro-
cess to identify the image either as the normal image or as a diseased one. The weights of 
the NN are optimally tuned using the proposed GO-GWO algorithm which assists in the 
enhancement of the classification accuracy of the proposed model.

3.1  Input mango leaf image

The analysis of mango leaf image is crucial in agricultural applications, due to the needs 
associated with it in enhancing the detection accuracy of the proposed classification mod-
ule. The classification of mango plant disease begins with the collection of plant leaf 
images. The input database contains images of both the healthy and the infected mango 
leaves. Moreover, the collected images are labeled as different classes such as normal or 
infected disease types. These images act as the input for the classification process. This 
image database acts as the input for the Neural Network classifier. The input dataset is 
mathematically represented as,

where, g refers to the total images of the input dataset and mp is the pth image of the input 
dataset. The input images extracted from the dataset are processed in such a way as to per-
form the classification process in the proposed research.

3.2  Image pre‑processing

Preprocessing leaf images previous to extraction and categorization is a typical technique. 
Different pre-processing strategies can be used to reduce noise from the attained photo-
graphs. These images may have an undesired background, which affects the prediction 
accuracy. As a result, the background of the original image must be eliminated before feed-
ing the images to convolutional layers. The edge detection method is utilized to remove 
the background in this paper. This method is used at the strongest line in the middle of 
the symmetrical leaf which indicates the leaf’s primary vein. The secondary veins are the 
straight lines that are followed near the vein. The edges of the leaf are joined to form the 
leaf’s boundary after the secondary veins have been discovered. The counters are converted 
to polar coordinates using the centroid of the primary vein [26].

Coefficients of a three-degree polynomial in the least squares sense are approximated to 
match the smooth data as expressed in Eq. (2). The curve is extracted, and the appropriate 
part is extracted, removing the image’s background.

3.3  Image segmentation

Image segmentation is a strategy for making a picture more meaningful and understand-
able. The technique of separating an image into many pieces depending on its qualities or 
likeness is referred to as segmentation. Different segmentation algorithms, such as k-means 
clustering, changing the RGB image in the model, and so on, can be applied. Dividing the 
image, or any relation, into different segments with similar features is of more concern 

(1)M =
{
mp

}
;(1 ≤ p ≤ g)

(2)Y = ax3 + bx2 + cx + d
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[22]. The division is twofold in the applications of plant disease recognition. The first 
element of the section is to get rid of the ailment-affected leaf’s foundation. The second 
part of the split is to distinguish between disease-affected tissues and solid tissue. The two 
splits, such as edge detection and region-based concept are used to complete the division. 
Edge Detection is used to recognize the discontinuity between the leaf and the image’s sur-
roundings, edges are determined. Pixels that are associated with a specific item are grouped 
into region-based concepts. At any pace, one pixel is associated with the area in each phase 
and is considered over.

3.4  Feature extraction

The next significant step in the proposed mango leaf disease classification module is the 
extraction of the significant features from the input mango leaf images obtained from the 
dataset. The feature extraction strategy is used to develop the feature vector from a regular 
vector. The extraction of the feature acts as an important task in image processing, and is 
applied in various areas of image processing. Color, morphology, and texture can be taken 
as a feature for the detection of leaf disease. In other words, a feature is an idiosyncratic 
determination that is extracted from the input images in the proposed classification mod-
ule. It involves selecting the features or data that are most significant to execute the classi-
fication process. The features that are needed to be extracted in the proposed system are the 
LDP, LBP, and LOOP features.

3.4.1  Local binary pattern

LBP is a basic yet efficient texture operator that identifies the pixels of the picture by calcu-
lating the threshold of each pixel’s neighborhood and outputs a binary value [27]. The LBP 
records the variation patterns relating to the image’s intensity and has the image’s discrimi-
nation properties. The value of LBP can be calculated as follows:

where, In is the intensity of the image A , at the pixel 
(
rn, sn

)
 , and Iq(q = 1, 2,… , 7) is the 

pixel intensity in the 3 × 3 neighborhood of 
(
rn, sn

)
 , except the center pixel In.

3.4.2  Local directional pattern

When compared to LBP, the local directional pattern [28] is a robust feature commonly 
employed for image processing that provides better results. To encode the picture texture, 
the LDP assesses the edge response value with different orientations. Edge responses are 
less vulnerable to noise and depict the natives, such as different sorts of curves, corners, 
and junctions. As a result, the pixel intensity is determined by the gradient magnitude of 
surrounding pixels. The benefit of LDP is examined and applied in the planned pest detec-
tion study. The LDP value for each pixel 

(
rn, sn

)
 in the image A is calculated as follows,

(3)LBP
(
rn, sn

)
=
∑7

q=1
�
(
Iq − In

)
2
q

(4)�
(
Iq − In

)
=

{
1, if

(
Iq − In

)
≥ 0

0 Otherwise

}
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where Iq is the pixel of intensity with (q = 1, 2,… , 7) and is the eight responses of the 
Kirsch masks, with (q = 1, 2,… , 7).

3.4.3  Local optimal‑oriented pattern

LOOP is defined as the non-linear joining of both LBP and LDP for handling the disadvan-
tages of the LDP and LBP techniques [29]. The LOOP idea is used to overcome limitations 
such as LBP’s wrong binary value and LDP’s self-imposed restrictions. For the image A , 
the LOOP value at the pixel 

(
rn, sn

)
 is calculated as follows,

The LOOP descriptor, which cancels the empirical assignment of the LDP parameter 
value, encodes rotation invariance in the main formulation. The feature vector is thus 
developed using the combination of the three features, such as LBP, LDP, and LOOP, and 
is represented as FVector =

{
FLBP,FLDP,FLOOP

}
 . The feature vector thus formed acts as the 

input to the proposed CO-GWO-NN model to execute the classification process.

3.5  Neural network classifier in mango leaf classification

The categorization between normal and diseased mango leaves can be made using ML 
algorithms, which automatically detect the presence without the need for human interven-
tion. When compared to other machine learning techniques, the answers acquired using 
neural networks have several advantages in a variety of applications. The NN is a math-
ematical model based on the biological NN, which is made up of a linked collection of 
artificial neurons that uses a connection technique to calculate information. The NNs are 
computing models with a huge number of interconnections and simple processors that are 
extremely parallel. The main premise for the construction of NN is human features, and it 
has neuron layers to process the data that is provided as input. The data flow is represented 
by multiplying the NN’s input with the weights [30]. The weights are evaluated by the 
mathematical functions, which then provide the neuron’s activation function. The output of 
the NN can be adjusted as expected with the proposed hybrid CO-GWO optimization algo-
rithm’s optimal weight tuning. Figure 2 depicts the structure of the NN.

The output of the ANN can be mathematically expressed as,

(5)LDP
(
rn, sn

)
=
∑7

q=1
�
(
�q − ��

)
2
q

(6)�
(
�q − ��

)
=

{
1, if

(
�q − ��

)
≥ 0

0 Otherwise

}

(7)LOOP
(
rn, sn

)
=
∑7

q=1

∑7

q=1
�
(
Iq − In

)
2
�q

(8)�
(
Iq − In

)
=

{
1, if

(
Iq − In

)
≥ 0

0 Otherwise

}

(9)ONN = C
(∑o

NN=1
WeNNiNN

)
+ bias
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where C represents the activation function, iNN is the input, and WeNN indicates the weight 
measures. The classification of the mango leaf either as normal or diseased is performed 
using the NN classifier. The advantage of using NN [31] is that the classifier automatically 
performs the classification task without the need for humans to intervene. The accuracy 
of categorization relies on the proper tuning of the hyper-parameters of the NN classifier 
using the proposed hybrid CO-GWO optimization algorithm.

3.6  Proposed hybrid CO‑GWO optimization algorithm

The proposed CO-GWO optimization algorithm is a hybrid meta-heuristics, proposed 
through hybridizing the features, like the social dominance features and the hierarchy-
based hunting features [32] of the Canidae family. The standard optimizations exhibit fea-
tures focused on hunting behaviors, which announces a dynamic nature in handling con-
vergence issues. The proposed CO-GWO algorithm solves this issue through the dynamic 
features of the population in the Canidae group, which boosts the ability of the proposed 
algorithm to attain better global optimal convergence as compared to basic optimization 
techniques that often converge to the local optimal solutions with better stability among 
exploitation and exploration phases.

3.6.1  Motivation of proposed optimization algorithm

The social dominance and hierarchy-based hunting skill of the coyotes and the social hunting 
hierarchy features of the grey wolf are incorporated to exhibit the functional modalities of the 
hybrid meta-heuristics, which is a population-based optimization. The population considered 
in this optimization belongs to the family Canidae, and they live in groups. The hierarchy-
based hunting phenomenon exhibits a hunting hierarchy with the presence of grey wolfs, such 
as leading grey wolf, representative grey wolf, obeyer grey wolf, and scapegoat grey wolf, 
where the hierarchy-based hunting experience and the social hunting hierarchy features of the 
grey wolfs ensures the effective convergence. As stated above, the hierarchy-based hunting 
experience of the population is supported by the hierarchical levels, where the leading grey 

Fig. 2  Structure of neural network
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wolf lies on the top-most level of the hierarchy and is responsible for creating solutions con-
cerning resting, hunting, and so on.

The leading grey wolf instructs the other grey wolf during hunting, while the leading grey 
wolf is not the strongest over other grey wolfs and does not at all mate within the group, but 
stays as the best grey wolfs over the group of grey wolfs. The representative grey wolf lies on 
the second level in the order as it instructs the leading grey wolf by transferring the resolution 
to the subordinate grey wolf in the search area. The scapegoat grey wolfs remain in the low-
est level, protecting the whole strength. The obeyer grey wolfs lie just over the scapegoat grey 
wolf, and principally, remains for the orders from the leading grey wolf. The major phases in 
the proposed CO-GWO algorithm are,

1) Social tracking hierarchy
2) Surrounding phase
3) Grey wolf’s hunting phase
4) Social dominance stage
5) Exploration stage

The novel hybrid CO-GWO algorithm, based on the hierarchy-based hunting experience 
of the coyotes and the social hunting hierarchy features of the grey wolfs are mathematically 
modeled as below,

3.6.2  Mathematical design of proposed CO‑GWO optimization

The mathematical representation of the grey wolfs in the various stages is summarized in this 
section as described below,

a) Social tracking hierarchy: The order of the grey wolfs pursues the leading, representa-
tive, obeyer, the scapegoat grey wolfs with the leading grey wolf being the strongest among 
the entire grey wolfs. The representative and the obeyer grey wolf pursue the second and 
third position in the order and are considered as the second and third best grey wolf, respec-
tively, while remaining the grey wolf’s strength stays as the scapegoat grey wolfs.
b) Surrounding phase: In this phase, the grey wolf environs the prey depending on the grey 
wolf’s need and convenience. The grey wolf in the surrounding phase is modeled as,

where, Jt+1
kl

 indicates the position of a kth grey wolf at lth the coordinate axis and t + 1 rep-
resents the updated location. Let Jt

kl
 indicates the location of the prey, z is the remoteness 

among the prey and the grey wolf, and H is the coefficient vector. The distance vector is 
formulated as,

where, Jt represents the position of a grey wolf at time t and U1 indicates the coefficient 
vector. The coefficient vectors H U1 are mathematically modeled as,

(10)Jt+1
kl

= Jt
L
− H.z

(11)z = ||U1.J
t
L
− Jt||

(12)H = 2V .w1 − V

(13)U1 = 2w2
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where V  gradually decreases to 0 from 2 with the number of iterations w1 and w2 indicates 
the random vector that ranges between 0 and 1.

c) Grey wolf’s hunting Phase: The grey wolf can identify the prey, where the process 
of hunting is done using the leader grey wolf, where the representative grey wolf and 
the obeyer grey wolf involve in the hunting act. The general grey wolf features are 
expressed as,

where, zL, zM , zT indicates the current path of the best grey wolf at the time of hunting. 
U1,U2, and U3 represents the random constraints of the grey wolfs that balance between 
the exploration and exploitation phases. The prey is surrounded by the grey wolfs, while 
the location of the prey stays nearer to the grey wolfs. At this step, the instruction is for-
mulated by the leading grey wolf based on which the representative grey wolf orders the 
other grey wolfs to trap the prey. The distance vectors are formulated as,

where, H1,H2, and H3 represents the coefficient vectors, and JL be the best solution at 
the time t . H1,H2, and H3 indicates the tunable parameters in the optimization process 
that takes charge of the optimal convergence by guiding to the local optimal solution, 
while improving the convergence to a global optimal solution. In general, the process 
of hunting among the grey wolfs relies on the first three best solutions based on leader, 
representative, and obeyer grey wolfs [17] concerning their positions as,

where J1 indicates the location of the leader grey wolf, J2 represents the location of the 
representative grey wolf, and J3 indicates the position of the obeyer grey wolf of the 
optimization procedure, referring to the first three best locations of hunting. It is clear 
from the above modeling that the hunting is guided by the remoteness among the grey 
wolf and the prey, and the tunable coefficient parameters. The hunting procedure and the 
rate of convergence are improved with the consideration of the hierarchy-based hunting 
experience of the grey wolfs [33]. The solution highlighting the hierarchy-based hunting 
features is mathematically expressed as,

where, Jt
X
 is the location of the Xth grey wolf at tth iteration, h1 and h2 are the random 

parameters that vary from 0 to 1. The term D1 represents the alpha influence and the 

(14)zL = ||U1JL − J||

(15)zM = ||U2JL − J||

(16)zT = ||U3JT − J||

(17)J1 = JL − H1zL

(18)J2 = JM − H2zM

(19)J3 = JT − H3zT

(20)Jt+1
kl,V

=
J1 + J2 + J3

3

(21)Jt+1
X

= J4 = Jt
X
+ h1D1 + h2D2
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term D2 indicates the pack influence. The integration of the hybrid features thus given 
by,

Thus, we obtain,

Equation (23) is the updated expression of the CO-GWO optimization algorithm, which 
relies on the constraints achieved from the social prevalence and hierarchy-based hunting 
features along with the social hunting hierarchy features of the grey wolfs. The proposed 
CO-GWO optimization algorithm possesses enhanced achievement of the global best solu-
tion through Eq. (23).

d) Social dominance stage: In this phase, the grey wolfs engage in probing the prey only 
inside the search area and it chooses the local best areas to assault the prey and complete 
the hunting procedure that is precisely formulated concerning H varying between the 
intervals −2w1 to 2w1 . Here, the value w1 deteriorates to 0 from 2 with the increase in 
iterations. The revision of the location depends on the social hunting hierarchy of the 
grey wolfs with fulfilling the condition H < 1.
e) Exploration stage: In this phase, the grey wolf, such as leader, representative, obeyer, 
and the scapegoat explores the exterior to the resolution space, and ends at the global 
best possible outcome. The exploration stage fulfills the criterion |H > 1| , which is 
managed by the factor U to assure enhanced hunting features. The proposed CO-GWO 
optimization algorithm offers a better balance among the exploitation and exploration 
phases thereby, avoiding the local optimal solutions to generate a global best outcome.

3.6.3  Algorithmic procedure of CO‑GWO optimization

The step-wise rationalization of the CO-GWO optimization is stated below:

i) Initialization: In this phase, the grey wolf population was initialized, in which each 
grey wolf represents the hyper-parameters. The grey wolf count is set as the initial posi-
tion of solutions, as expressed as,

where, � represents the total grey wolf and � is the location of the grey wolf in the coor-
dinate axis.
ii) Calculation of fitness measure: The fitness measure is found using the factors, such 
as precision, accuracy, and recall measures, which are expressed as,

The value of fitness must be maxima for the solution to be optimal in such a way as to 
enhance the effectiveness of the proposed mango leaf disease classification module.

(22)Jt+1
kl,V

=
J1 + J2 + J3 + J4

4

(23)Jt+1 =

[(
JL + JM + JT

)
−
(
H1zL + H2zM + H3zT

)
+
(
Jt
X
+ h1D1 + h2D2

)

4

]

(24)Jkl;(1 ≤ k ≤ �);(1 ≤ l ≤ �)

(25)F =

(
Accuracy + precision + recall

3

)
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iii) Evaluation of best solution: The best solution is considered as L,MT grey wolf 
depending on their corresponding fitness measure, which is maximal over all the itera-
tions. Once the best outcome is found, the other grey wolfs revise their location based 
on the position of the leader grey wolf.
iv) Update of coefficients: The coefficients used in the optimization algorithm, such 
as optimization parameters, constants, and random measures are updated to assist the 
proper stability among exploitation and exploration phases.
v) Stopping condition: The procedure is continued until maximum iterations and the 
global optimal solution is found. Table 1 demonstrates the pseudocode of the CO-GWO 
algorithm.

In the proposed work, CO-GWO was employed to tune the hyperparameters of the NN 
classifier. In tuning of hyperparameters begins with the initialization of the grey wolf pop-
ulation, with each grey wolf representing a specific sequence of hyperparameters. These 
hyperparameters control the behavior and performance of the NN classifier. The fitness of 
the CO-GWO was estimated based on the performance metrics such as precision, accuracy, 
recall, etc., to maximize the fitness value for optimal solutions. The evaluation of the best 
solution identifies the grey wolf with the highest fitness measure as the leader. Other grey 
wolves adjust their positions based on the leader’s position to explore and exploit promis-
ing regions of the hyperparameter search space. Coefficients used in the optimization algo-
rithm, including optimization parameters, constants, and random measures, are updated to 
maintain a balance between exploitation and exploration. The algorithm continues until a 
stopping condition, such as reaching a maximum number of iterations, is met. The global 
optimal solution represents the set of hyperparameters that yield the best performance for 
the NN classifier. By iteratively applying the CO-GWO optimization algorithm, the hyper-
parameters of the NN classifier can be properly tuned, enhancing its effectiveness in accu-
rately classifying mango leaf diseases.

4  Results and discussion

The outcomes attained using the CO-GWO-NN mango leaf classification disease module 
and the comparative evaluation for proving the efficiency of the proposed CO-GWO-NN 
classifier in mango leaf disease classification are discussed in this part.

4.1  Experimental setup

The analysis is executed in the PYTHON tool set up in Windows 10 OS and 64-bit OS 
with 16 GB RAM.

4.2  Dataset description

The presented CO-GWO-NN framework was validated with the publically available mango 
leaf image database collected from the Mendeley data site. This database contains a total 
of 435 images, out of which 265 images are labeled as diseased and the remaining images 
are normal mango leaves.
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The database was initially split into 412 images for training and 23 images for testing 
purposes. The training set contains 252 files of diseased images and 161 files of healthy 
data, and the testing set includes 14 files of disease images and 9 images of healthy files. 

Table 1  Pseudocode of CO-GWO algorithm
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Table 2  Sample dataset

Table 3  Image segmentation



 Multimedia Tools and Applications

1 3

The sample of mango leaf images present in the database is tabulated in Table 2. Fur-
ther, Table 3 illustrates the sample for image segmentation.

4.3  Evaluation metrics

The effectiveness of the CO-GWO-NN module is tested using the metrics described below,

4.3.1  Accuracy

The accuracy is defined as the rate of closeness to the evaluated measure of the system to 
the real measure of the system, and is expressed mathematically as,

4.3.2  Precision

The evaluation of the rate of the total number of true positive values to the sum of true 
positives and false positives is termed precision, and is expressed as,

4.3.3  Recall

The term recall is stated as the ratio of true positive values to the number of real positive 
cases as,

4.3.4  F1 measure

The measure of the accuracy of a model is termed the F1 score, and it is the mean of preci-
sion and recall.

4.4  Performance analysis

In this section, the performances of the proposed model were analyzed in terms of training 
percentage and k-fold values. The confusion matrix of the proposed model for the mango 
leaf image dataset is displayed in Fig. 3. The confusion matrix is a square matrix, which 
summarizes the performance of a classification model by displaying the counts of true pos-
itive, true negative, false positive, and false negative predictions for each class.

By analyzing the confusion matrix, the performance of the classification model is evalu-
ated in terms of accuracy, recall, precision, and f-measure.

(26)Accuracy =
True positive + True negative

real positive + real negative

(27)Pr ecision =
True positive

True positive + False positive

(28)Re call =

(
True positive

no of real positive cases

)
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4.4.1  Performance analysis in terms of training percentage

The performances of the presented model were estimated in terms of accuracy, recall, 
precision, and f-measure by implementing it in Python for the Mango leaf images col-
lected from the Mendeley database. In the proposed work, the outcomes are determined 
for training percentage and k-fold value. The performances of the designed model were 
analyzed at different training percentages relative to the number of iterations (epochs). 
Here, the result parameters are examined at different training percentages as 50%, 60%, 
70%, and 80%, respectively by varying the epochs count as 20, 40, 60, 80, and 100. The 
increase in the performance of the model over increases in epochs demonstrates its effi-
ciency and robustness. When the training data percentage is 50%, the proposed model 
earned an approximate accuracy of 93.1502%, 93.3832% of precision, 91.5131% recall, 
and 94.1219% of f-measure over increasing epochs.

Similarly, the system performances were estimated for a 60% training data ratio at 
varying epoch counts. At 60% training data, the developed model achieved approxi-
mate performances of 94.2902% accuracy, 94.5432% precision, 91.5628% recall, and 
94.5814% over the increasing number of iterations. Figure 4 illustrates the performances 
of the system at different training data ratios. Figure 4(a) demonstrates the accuracy of 
the developed model over epochs at different training data percentages. At 70% train-
ing data percentage, the presented model attained approximate outcomes of 94.3132% 
accuracy, 94.6302% precision, 91.7346% recall, and 95.3086% f-measure. Figure 4(b) 
displays the precision performance of the system over increasing epochs at different 
training percentages.

Fig. 3  Confusion matrix
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Furthermore, the system performances are monitored at an 80% training percentage over 
increasing epochs. At 80% training percentage, the presented model obtained greater per-
formances such as 94.6627% accuracy, 95.9169% precision, 91.7886% recall, and 95.358% 
f-measure. Figure 4(c) and (d) represents the recall and f-measure performances of the sys-
tem at different training percentage with an increasing number of epochs. This comprehen-
sive analysis of system outcomes over increasing epochs at different training percentages 
illustrates that the performance of the presented model was improved over the increase in 
epochs and training percentage.

4.4.2  Performance analysis in terms of k‑fold value

In this section, the performances of the proposed CO-GWO-NN framework were ana-
lyzed at different k-fold values over increasing epochs. Figure  5 portrays the system 
performances at different k-fold values as 2, 4, 8, and 10 with increasing numbers 
of iterations as 20, 40, 60, 80, and 100. For a k-fold value of 2, the designed model 
achieved performances of 90.9905% accuracy, 90.3260% precision, 90.2493% recall, 
and 90.4388% f-measure over increasing epochs. Figure  5(a) illustrates the accuracy 
of the system over increasing epochs at different k-fold values. For the k-fold value 
of 4, the designed model attained an approximate accuracy of 91.5318%, precision of 

Fig. 4  Performance analysis in terms of training percentage (a) accuracy, (b) precision, (c) recall, and (d) 
F1-measure
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91.859%, recall of 90.4364%, and f-measure of 91.5146%. Figure  5(b) demonstrates 
the precision of the system at varying k-fold values over increasing epochs. Similarly, 
the system performances are examined fog k-fold value of 8.

For the k-fold value of 8, the presented framework earned approximately 92.5632% 
accuracy, 93.7122% precision, 92.1433% recall, and 92.685% f-measure with increas-
ing the epochs. Figure 5(c) displays the recall performances of the system for different 
k-fold values over epochs. Finally, the presented model outcomes are analyzed for the 
k-fold value of 10 over an increasing number of epochs as 20, 40, 60, 80, and 100. For 
the k-fold value of 10, the developed CO-GWO-NN framework obtained performances 
of 93.0279% accuracy, 94.2601% precision, 92.8359% recall, and 92.9251% f-measure. 
Figure  5(d) represents the f-measure of the designed model for different k-fold val-
ues over the increasing number of epochs. The increase in system performances over 
the increase in k-fold value and epochs demonstrates the effectiveness of the proposed 
approach.

4.5  Comparative evaluation

This section deliberates the comparative evaluation of techniques in terms of k-fold 
and training percentage. The strategies considered for comparison with the proposed 
CO-GWO-NN are the K-nearest neighbor classifier [34], SVM classifier [35], Neural 
network (NN) [34], COA-NN [33, 34], and the GWO-NN [32, 36].

Fig. 5  Performance analysis in terms of k-fold value (a) accuracy, (b) precision, (c) recall, and (d) F1-meas-
ure
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4.5.1  Comparative analysis in terms of training percentage

In this module, the performances of different existing techniques are compared with the 
proposed model for validation purposes. The performances of the conventional approaches 
such as K-NN, SVM, NN, COA-NN, and GWO-NN are validated with the presented 
model. The comparison of the proposed model performance relative to the training percent 
is portrayed in Fig. 6. At 50% training percent, the traditional models such as K-NN, SVM, 
NN, COA-NN, GWO-NN, and the developed model attained an approximate accuracy of 
70%, 77.5%, 85%, 89%, 88%, and 91% respectively. At 60% training percent, these mod-
els achieved an approximate accuracy of 70.0128%, 82.5%, 87%, 90%, 88%, and 91.5%, 
respectively. Similarly, at 70% training percent the existing models such as K-NN, SVM, 
NN, COA-NN, GWO-NN, and the presented approach obtained an approximate accuracy 
of 72%, 84%, 88%, 90%, 89%, and 92%, respectively. Furthermore, the performances of 
the methods such as K-NN, SVM, NN, COA-NN, GWO-NN, and the presented CO-GWO-
NN model were analyzed at 80% training percent. At 80% training percent, these models 
earned accuracy of 75%, 84%, 89%, 92%, 89%, and 93.5%, respectively. Figure 6(a) illus-
trates the accuracy of various models at different training percentages.

Consequently, the other performance parameter like precision was compared with exist-
ing models. Figure  6(b) demonstrates the comparison of the precision of different tech-
niques. At 50% training percent, the methods like K-NN, SVM, NN, COA-NN, GWO-NN, 
and the designed CO-GWO-NN technique earned an approximate precision of 73%, 75%, 

(a) (b)

(c) (d)

Fig. 6  Performance evaluation in terms of training percentage (a) accuracy, (b) precision, (c) recall, and (d) 
F1-measure
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77%, 87%, 85%, and 89% respectively. Similarly, at 60% training percent these models 
achieved an approximate precision of 74%, 75%, 77%, 87%, 85.5%, and 90%, respectively. 
For 70% training percentage, the techniques such as K-NN, SVM, NN, COA-NN, GWO-
NN, and the proposed approach attained an approximate precision of 74%, 75%, 77%, 88%, 
86%, and 91%, respectively. Finally, for the 80% training percent, the models including 
K-NN, SVM, NN, COA-NN, GWO-NN, and the GWO-NN model earned an approximate 
precision of 75%, 76%, 80%, 88%, 86%, and 92%, respectively.

Figure  6(c) portrays the comparison of recall performance of various models at dif-
ferent training percent. For 50% training percentage, the methods such as K-NN, SVM, 
NN, COA-NN, GWO-NN, and CO-GWO-NN obtained an approximate recall percentage 
of 82%, 87%, 87%, 89%, 88%, and 90% respectively. For a 60% training percentage, the 
above-mentioned models attained an approximate recall rate of 83%, 87%, 88%, 90%, 89%, 
and 90.5%, respectively. On the other hand, for 70% training percentage these techniques 
achieved an approximate recall of 82%, 87%, 88%, 90%, 89%, and 90.5%, respectively. 
Finally, the performance of different models at 80% training percentage was validated. The 
approaches like K-NN, SVM, NN, COA-NN, GWO-NN, and CO-GWO-NN earned an 
approximate recall rate of 83%, 88%, 88.5%, 90%, 89%, and 91%, respectively.

The comparative performance of the f-measure relative to different training percentages 
is illustrated in Fig. 6(d). The models such as K-NN, SVM, NN, COA-NN, GWO-NN, and 
CO-GWO-NN attained an approximate f-measure of 68%, 72%, 75%, 88%, 85%, and 89% 
respectively for 50% training percentage. For a 60% training percentage, the above-men-
tioned techniques earned f-measure of 70%, 72%, 83%, 88%, 85%, and 89.5%, respectively. 
For 70% training percentage, the techniques such as K-NN, SVM, NN, COA-NN, GWO-
NN, and CO-GWO-NN obtained f-measure of 71%, 73%, 84%, 88%, 87%, and 90.5%, 
respectively. Finally, the f-measure performance was examined at 80% training percent-
age was evaluated. The methods like K-NN, SVM, NN, COA-NN, GWO-NN, and CO-
GWO-NN achieved f-measure of 72%, 81%, 85%, 90%, 89%, and 91%, respectively. This 
intensive comparative analysis demonstrates that the developed model outperformed the 
existing models in terms of accuracy, precision, recall, and f-measure. This illustrates the 
integration of multiple approaches into a single CO-GWO-NN model enhances the disease 
classification performances.

4.5.2  Comparative analysis in terms of k‑fold value

The comparative performance of various models relative to different k-fold values is illus-
trated in Fig. 7. Figure 7(a) demonstrates the accuracy outcomes of the approaches for dif-
ferent k-fold values. At different k-fold values ((2, 4, 5, and 8), the models such as K-NN, 
SVM, NN, COA-NN, GWO-NN, and the proposed CO-GWO-NN achieved an average 
accuracy of 79%, 82%, 88%, 95%, 90%, and 97%, respectively. Figure 7(b) portrays the 
comparison of precision percentages in terms of different k-fold values. For the varying 
k-fold values, the methods including K-NN, SVM, NN, COA-NN, GWO-NN, and the 
developed CO-GWO-NN earned approximately an average precision rate of 80%, 85%, 
90%, 97%, 95.5%, and 97.5%, respectively.

Similarly, the recall rates of different models are evaluated in terms of k-fold values in 
Fig. 7(c). The existing techniques like K-NN, SVM, NN, and COA-NN obtained an aver-
age recall rate of 82%, 83%, 84%, 95%, and 95%, respectively. But the proposed model 
attained a greater recall rate of 97%, which is higher than the existing models. Furthermore, 
the f-measure performances of different existing models and the proposed model were 



 Multimedia Tools and Applications

1 3

evaluated in terms of k-fold value. Figure  7(d) displays the evaluation of the f-measure 
of different techniques relative to the k-fold value. The existing techniques such as K-NN, 
SVM, NN, and COA-NN obtained f-measure of 79%, 81%, 86%, 95%, and 95%, respec-
tively. However, the designed model attained a higher f-measure of 97%, which is greater 
than the f-measure attained by the existing models. This intensive evaluation of system 
performances with existing approaches validates the efficiency of the proposed model.

4.5.3  Comparison with state‑of‑art techniques

Furthermore, to manifest the effectiveness and robustness of the proposed model, the 
average system performances are compared within recent state-of-art techniques such as 
ESDNN, HDL-SVM, ORNN, DCGAN, CNN, LCNN, and VGGNet16. The average per-
formances earned by the presented model such as accuracy, recall, precision, and f-measure 
are compared with the above-mentioned techniques. The comparison of presented model 
performances with state-of-art models is illustrated in Fig.  8. Figure  8(a) demonstrates 
the comparison of system accuracy with different models. The existing models including 
ESDNN, HDL-SVM, ORNN, DCGAN, CNN, LCNN, and VGGNet19 attained accuracy 
of 86.108%, 85.432%, 87.954%, 85.870%, 88.754%, 89.912%, and 86.921%, respectively. 
The average accuracy earned by the designed model is 95.592%, which is greater compared 
to the state-of-art approaches. Figure 8(b) displays the comparison of recall performance. 
The performances of these techniques are estimated for the mango leaf database.

(a) (b)

(c) (d)

Fig. 7  Performance evaluation in terms of k-fold value (a) accuracy, (b) precision, (c) recall, and (d) 
F1-measure
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The state-of-techniques such as ESDNN, HDL-SVM, ORNN, DCGAN, CNN, 
LCNN, and VGGNet19 obtained the recall of 85.192%, 84.710%, 86.543%, 85.120%, 
87.652%, 89.215%, and 85.432%, respectively. But the proposed model earned a higher 
recall of 94.834%, which is greater than the state-of-art models. Figure  8(c) portrays 
the comparison of the precision of different models. The state-of-art approaches such 

(a) Accuracy (b) Recall

(c) Precision (d) F-measure

Fig. 8  Comparative analysis: (a) Accuracy, (b) Recall, (c) Precision, and (d) F-measure

Table 4  Statistical comparative 
analysis with state-of-art models

Techniques Accuracy Recall Precision F-measure

ESDNN 86.108 85.192 85.938 84.761
HDL-SVM 85.432 84.710 84.395 85.075
ORNN 87.954 86.543 86.762 87.405
DCGAN 85.870 85.120 84.970 85.032
CNN 88.754 87.652 88.065 87.771
LCNN 89.912 89.215 88.045 88.573
VGGNet19 86.921 85.432 86.109 86.170
Proposed 95.592 94.834 94.3113 95.0119
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as ESDNN, HDL-SVM, ORNN, DCGAN, CNN, LCNN, and VGGNet19 attained pre-
cision percentages of 85.938%, 84.395%, 86.762%, 84.970%, 88.065%, 88.045%, and 
86.109%, respectively. The implementation of the proposed model earned 94.3113% 
recall, which is higher than the state-of-art models. Figure  5(d) demonstrates the 
f-measure comparison.

The proposed model earned an excellent f-measure of 95.0119%. On the other hand, 
the state-of-art models such as ESDNN, HDL-SVM, ORNN, DCGAN, CNN, LCNN, 
and VGGNet19 obtained greater f-measure of 84.761%, 85.075%, 87.405%, 85.032%, 
87.771%, 88.573%, and 86.170%, respectively. The numerical comparative analysis is 
illustrated in Table  4. This intensive comparative analysis demonstrates that the pre-
sented model achieved greater disease classification compared to the recent state-of-art 
models.

4.6  Discussion

In this article, a novel hybrid disease classification strategy was designed to predict the 
normal and infected mango leaves. This method employs the CO-GWO approach to 
optimize the classification process. The presented model was trained and tested with 
the mango leaf images collected from the Mendeley database and the performances are 
evaluated. Furthermore, a comprehensive comparative analysis was performed with dif-
ferent existing models in terms of training percentage and k-fold value. In addition, to 
evaluate the effectiveness of the developed model the system performances are com-
pared with the state-of-art techniques. This intensive performance analysis demonstrates 
that the developed model outperformed the existing techniques in terms of accuracy, 
precision, recall, and f-measure. Table  5 presents the overall comparative analysis of 
different models in terms of training percentage and k-fold value.

Table 5  Comparative discussion

S.No Evaluation 
means

Metrics Methods

K-NN SVM NN COA-
DCNN

GWO-
DCNN

Proposed 
CO-GWO-
NN

1 Training 
percent-
age

Accuracy 
(%)

85.1657 87.9742 89.2238 92.2329 89.8044 93.6147

Precision 
(%)

81.0686 82.7593 85.3350 89.0536 86.5736 92.0977

Recall (%) 83.6094 87.9421 89.2053 90.1873 89.2123 91.4722
F1-measure 78.0563 85.7318 88.1936 89.9884 89.7375 93.5446

2 K-fold value Accuracy 
(%)

79.4041 81.6254 87.6198 95.3420 90.4980 96.7111

Precision 
(%)

80.1231 84.7131 89.8507 96.7548 95.5976 97.5712

Recall (%) 82.2482 82.9813 84.2290 95.1290 95.0526 97.1504
F1-measure 78.8264 81.2042 85.7380 94.9616 90.0989 96.4792
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5  Conclusion

This research article proposes a hybrid optimization strategy for mango leaf disease catego-
rization with the aid of the images extracted from Mendeley data. In specific, the Coyote-
Grey wolf optimization (CO-GWO) algorithm involves the optimal tuning of the parame-
ters of the neural network (NN) classifier, which involves the classification process through 
the features extracted from the input image. The proposed CO-GWO algorithm is impor-
tant in the enhancement of the efficiency of the proposed classification model as it consid-
ers the best weights of the NN classifier. The efficiency of the CO-GWO-NN strategy is 
analyzed with the evaluation indices, namely accuracy, recall, precision, and F1-measure, 
which are attained to be 96.7111%, 97.5712%, 97.1504%, and 96.4792%, respectively. This 
ensures the dominance of the developed strategy’s ineffective classification when evaluated 
against the conventional methods. In the future, an ensemble classifier will be utilized to 
further boost the accuracy of the proposed model of mango leaf disease classification.
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