
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023 2099

Intelligent Latency-Aware Tasks Prioritization
and Offloading Strategy in Distributed

Fog-Cloud of Things
Chinmay Chakraborty , Senior Member, IEEE, Kaushik Mishra , Member, IEEE,

Santosh Kumar Majhi , Member, IEEE, and Hemanta Kumar Bhuyan

Abstract—Offloading the dynamic tasks with fog com-
puting is envisioned as a viable option for prolonging
resource-limited constraints and improving the computa-
tional and communicational latency for delay-sensitive IoT
applications. Besides, the priority of tasks and the target
layers for offloading them to minimize the incurred service
latency is a prime concern in layered computing architec-
ture. To leverage the efficiency of the underlying computing
nodes for the tasks’ heterogeneity and computational re-
quirements with deadline constraints, this article presents
a fuzzy logic technique to prioritize the tasks based on
their resource requirements and associated deadline. For
efficient scheduling, an elitism-based multipopulation Jaya
is proposed to map these disparate groups of tasks to a
cluster amalgamation of computational-rich heterogeneous
computing nodes. Moreover, a compatibility-based heuris-
tic offloading strategy is devised to determine compatible
computing nodes to offload the computations considering
the availability of resources and communicational time from
the respective IoT devices. Finally, extensive simulations
are carried out with conflicting scheduling parameters ap-
praising the efficacy of the proposed strategy over existing
algorithms. The percentages of improvements of the pro-
posed algorithm over the compared algorithms are 35% and
28% for average waiting. time and average service latency,
respectively.

Index Terms—Deadline, fog computing, fuzzy logic, IoT,
latency, priority-aware, task offloading.

Manuscript received 30 March 2022; revised 18 April 2022; accepted
29 April 2022. Date of publication 10 May 2022; date of current version
13 December 2022. This work was supported by All India Council for
Technical Education, New Delhi, India, under RPS Project Grant 8-
83/FDC/RPS (POLICY-1) 2019-20. Paper no. TII-22-1339. (Correspond-
ing author: Kaushik Mishra.)

Chinmay Chakraborty is with the Birla Institute of Technology, Mesra
835215, India (e-mail: cchakrabarty@bitmesra.ac.in).

Kaushik Mishra is with the Sambalpur University Institute of
Information Technology, Burla 768019, India (e-mail: kaushik-
mishra1991@gmail.com).

Santosh Kumar Majhi is with the Veer Surendra Sai University of
Technology, Burla 768018, India (e-mail: smajhi_cse@vssut.ac.in).

Hemanta Kumar Bhuyan is with the Vignan’s Foundation for
Science, Technology and Research, Guntur 522213, India (e-mail:
hmb.bhuyan@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2022.3173899.

Digital Object Identifier 10.1109/TII.2022.3173899

I. INTRODUCTION

A TREMENDOUS latency-sensitive data are generated ev-
ery day from the widespread deployment of distributed

IoT devices, which requires to be processed in no time due to the
associated deadline However, while processing in cloud nodes, it
incurs a huge transmission delay and network congestion due to
the physical gap between IoT devices and cloud servers [1]–[3].
Therefore, fog computing has evolved as a promising technology
to leverage the inherent limitations of cloud computing. In tradi-
tional fog-assisted computing, the generated tasks from the IoT
devices are offloaded to the computing nodes for processing via
the intermediate nodes. However, the primary consensus of fog
computing is to process the deadline-aware computations by the
computational-rich resources to minimize the communicational
latency [5]. Moreover, computing nodes take different process-
ing times due to the disparate requirements of tasks generated
by IoT devices. Besides, deadline-based tasks can be hard- and
soft-deadline-based tasks. In addition, the priority constraint is
associated with each task due to the sensitivity of the information
for such applications. These tasks need to be offloaded onto the
respective target layer for efficient processing while meeting the
required QoS objectives. Therefore, to address these two critical
yet sensitive issues, this research uses a fuzzy logic strategy to
determine the target layers considering tasks requirements (e.g.,
task size, associated deadline, network bandwidth, and delay
sensitivity). Moreover, the tasks with high priority and hard
deadlines are not suitable for processing in the local fog nodes
due to fog nodes’ computational and storage-limited capabili-
ties. Therefore, it compels to offload the tasks onto the cloud
layer based on their requirements while meeting the desired
deadline and QoS constraints. Thus, a layered framework, such
as IoT-fog-cloud architecture is more efficient for processing
the latency-sensitive tasks by the resource-intensive computing
nodes while satisfying the QoS criteria.

The primary objective of this research is to design a latency-
aware offloading strategy for minimizing the latency considering
tasks’ priorities while meeting the deadline and other conflicting
QoS constraints. Besides, it aims to reduce the service rate
while maximizing resource utilization. The contributions of this
research are enlisted as follows.

1) Implement a strategy to minimize the offloading time
for latency-sensitive applications considering deadline,

1551-3203 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4385-0975
https://orcid.org/0000-0001-9499-0727
https://orcid.org/0000-0002-8887-6933
https://orcid.org/0000-0002-9712-7280
mailto:cchakrabarty@bitmesra.ac.in
mailto:kaushikmishra1991@gmail.com
mailto:kaushikmishra1991@gmail.com
mailto:smajhi_cse@vssut.ac.in
mailto:hmb.bhuyan@gmail.com
https://doi.org/10.1109/TII.2022.3173899

2100 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023

latency constraints, and resource heterogeneity for con-
current execution of dependent tasks.

2) Devise a model using fuzzy logic for classifying tasks and
determining the target layers for offloading them.

3) Propose an elitism-based multipopulation Jaya (EMPJ)
algorithm to map the dynamic tasks onto multicluster fog
nodes for scheduling to have optimal results.

A plethora of literature [2]–[12], [21]–[23] has implemented
various offloading strategies to address this issue. However,
all these existing strategies have not considered delay-sensitive
tasks with the associated deadline and priority. The computing
nodes can process fewer tasks without any deadline or delay.
Nonetheless, the latency-sensitive applications nowadays gener-
ate most of the tasks with disparate high-end requirements (such
as deadline, priority, delay, etc.), which need to be processed
by computationally efficient nodes to reduce the transmission
latency. Most of the existing research assumed independent tasks
with homogeneous resources without considering the dependent
and priority-aware tasks with heterogeneous resources.

The rest of this article is organized as follows. Section II
presents the system architecture followed by the computational
model. The proposed latency-aware task prioritization and of-
floading strategy are discussed in Section III. Section IV demon-
strates the performance evaluations with comparative analysis.
Finally, Section V concludes this article.

II. FRAMEWORK FOR FOG-CLOUD OF THINGS AND

MODEL FORMULATION

A. System Architecture

A three-layered hierarchical framework (see Fig. 1) consisting
of three tiers, such as the IoT layer (Tier 1), fog layer (Tier 2),
and cloud layer (Tier 3), is considered. The working nature of
each layer is illustrated as follows.

First, the IoT layer consists of different smart devices that
generate a bulk amount of data through terminal nodes, sen-
sors, actuators, and embedded systems implanted in IoT smart
devices. The data are associated with disparate specifications
(deadline, priority, latency rate, length, etc.). Due to the limited
computing and storage capacity, it gathers and offloads these
tasks to either the fog layer or the cloud layer through the edge
of the network (fog layer 1).

Second, the fog layer is divided into two sublayers, i.e., fog
layer 1 and fog layer 2. Fog layer 1 is considered as the edge of
the network consisting of intermediate nodes, such as routers,
switches, called gateways for routing the packets generated from
IoT devices to fog layer 2 or cloud layer. Besides, fuzzy logic
is implemented in this layer to prioritize and classify the tasks
by determining the target layers for offloading. Next, fog layer 2
consists of numerous computing nodes (fog nodes) distributed
geographically across this layer. All the fog nodes are clustered
to form a multicluster strategy to process different tasks with
disparate requirements. A cluster encompasses a mix of homoge-
neous and heterogeneous resources to meet the QoS objectives.
Within a cluster, all the fog nodes are synchronized with a cluster
head (CH). All the CHs of the fog layer 2 are connected with a
primary controller, called the fog controller (FC). Moreover, the

Fig. 1. Three-layered framework for IoT-fog-cloud.

FC consists of a load balancer, which distributes the loads evenly
among clusters, a task buffer, which keeps all the ready tasks in a
queue, and a resource monitor, which monitors the degree of con-
sumption and availability of fog nodes collaboratively with each
CH. Each cluster is having a scheduler managing the allocation
and offloading of tasks from the fuzzy logic architecture (FLA).

Third, the cloud layer is primarily responsible for storing and
processing the high-end tasks (high priority and hard deadline) to
minimize the service time as well as latency to meet the deadline.
This layer consists of centralized, computationally rich virtual
machines (VMs) as computing nodes [13].

B. Computational Model

1) Task Model: A three-layered IoT-fog-cloud continuum is
considered in which the number of D Internet-enabled devices
(called IoT devices) denoted as D = {1, 2, . . . , m} and an
array of M fog nodes denoted as M = {1, 2, . . . , m} are
geographically distributed across fog layer 2. Furthermore, a set
of S intermediate nodes denoted as S = {1, 2, . . . , m} is
deployed in the fog layer 1 for task routing to suitable fog nodes
or cloud VMs. Moreover, a series of H cloud VMs denoted
as H = {1, 2, . . .m} are deployed in a centralized cloud
datacenter. We assume that the memory usage and the CPU fre-
quency of fog nodes are lower than the cloud VMs. Consider a set
of dependent tasks denoted as T = {1, 2, . . . n} is generated
by the deployment of the IoT devices and expressed in million
instructions. Based on the requirements (priority, deadline, and

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

CHAKRABORTY et al.: INTELLIGENT LTPO STRATEGY IN DISTRIBUTED FOG-CLOUD OF THINGS 2101

Fig. 2. Illustration of task-resource graph.

latency), tasks are processed locally in the fog layer or remotely
by cloud VMs. Therefore, we denote the task mapping matrix
as X = Rn ×|D×M×H| , where the task-resource (i, j) entry
is represented as Xj

i = {1, 0} , i ∈ n, j ∈ m(M ∪H). In this
mapping, 1 indicates the assignment of ith task on jth computing
node and otherwise.

A directed acyclic graph (DAG) is used to represent the
interdependency among tasks in a multiprocessing environment.
It is denoted as G = {v, E, τ, ϕ}, where v is the set of
vertices represented as vij = {v11, v12, . . . , vnm} , i ∈ n, j ∈
m(D ∪M ∪H), E is the set of edges between two vertices,
τ is the set of vertex weights that represents completion time,
and ϕ is the set of edge weights that represents transmission
time. The time required to transmit the interdependent data to
the dependent task is referred to as the transmission time or
data communication cost. The cost between two tasks is zero if
both of them are processed by the same computing node. For
instance, an edge (e(vij , vkj) ∈ E) between vertices vij and
vkj represents that the task k should get executed only after the
execution of task i.

Fig. 2 illustrates a random task-resource graph with seven
tasks and three computing nodes for a multiprocessing environ-
ment. In the graph, each vertex represents a pair of task-resource
mapping and each edge between two consecutive vertices rep-
resents the interdependencies among them. The vertices high-
lighted in green color are called the entry (T7) and the exit (T3)
vertices.

2) Latency-Aware Model: A task gets associated with the
latency or delay when it is forwarded to a corresponding layer for
processing and acknowledging it. Therefore, the latency rate for
each type of task varies accordingly. For instance, the time taken
to offload and process a task remotely would not be the same for
those tasks executed and processed locally. The degree of latency
for any task i offloaded by an IoT device d is characterized
by three factors, such as transmission time, computation time,
and acknowledgment time. Therefore, it can be estimated as the
summation of the transmission latency for both fog and cloud
layers.

a) Service latency in the fog layer: The service delay
for a task i offloaded by an IoT device d indicates the service
time to get responded by a fog node and is estimated as the
aggregate of the following:

1) transmission latency for a task i to any jth fog node
(LFog

T (i, j));
2) computation latency for a task i to any jth fog node;
3) acknowledgment latency for a task i to the IoT device

(LF _Iot
Ack(i)); and

4) the delay incurred by migrating the task i to the cloud
(LCloud

Migrate(i,j)).
It is expressed as follows:

LFog = LFog
T (i, j) + LFog

C(i, j) + LF _Iot
Ack(i) + αLCloud

Migrate(i, j)

+ LCloud_F
Ack(i) . (1)

Here, α(= T i
sent
T) is the ratio of total tasks sent from the fog

layer to the cloud, and LCloud_F
Ack(i) is the acknowledgment for the

migrated task i from the cloud to the jth fog node.
b) Service latency in the cloud layer: The high-end

tasks are forwarded to the cloud via gateways S for processing.
Thus, it also incurs some transmission delay as well as compu-
tation delay. Therefore, the total service latency experienced in
the cloud layer is the sum of the following:

1) the transmission latency of transmitting the task i to the
jth VM (LCloud

T (i, j));
2) the computation latency of processing the task i on the

jth VM (LCloud
C(i, j)); and

3) the transmission latency of acknowledging the IoT device
d for the ith task (LCld_Iot

Ack(i)).
Therefore, the total latency of the cloud is expressed as

LCloud = LCloud
T (i, j) + LCloud

C(i, j) + LCld_Iot
Ack(i) . (2)

1) Transmission latency for offloading: The transmission
latency to offload a task i to any jth fog node or cloud
VM is estimated as follows:

LT (i, j) = Leni × LNW . (3)

Here, Leni is the length of the ith task, and LNW is the delay
caused by transmitting a single byte of the task to the respective
node.

2) Computational latency: The computation latency of a task
i on the jth node is estimated as follows:

LC(i, j) = Leni × SR (j)

NT (j)
. (4)

Here, SR(j) and NT (j) are the service rate of the jth fog
node and the total number of tasks allocated to the jth fog node,
respectively.

3) Migration latency: The delay caused by migrating the
task to the cloud in an adverse situation is estimated as
follows:

LCloud
Migrate(i, j) = Leni ×

(
LNW +

SR (j)

NT (j)

)
. (5)

4) Acknowledgment latency: The transmission latency to
send an acknowledgment from the fog and cloud directly
to the IoT device is estimated as follows:

LAck (i, j) = Leni × LNW . (6)

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

2102 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023

III. PROPOSED LATENCY-AWARE TASKS PRIORITIZATION AND

OFFLOADING (LTPO)

This section elucidates the proposed latency-aware task prior-
itization and offloading strategy in a three-layered architecture
followed by the proposed problem formulation. This proposed
strategy consists of three phases as follows: (a) Task prioritiza-
tion, (b) task scheduling, and (c) task offloading. The first phase
deals with the assignment of the priority and determines the
target offloading layer using an FLA. The second phase proposes
an EMPJ algorithm for the task scheduling on the underlying
computing nodes (M ∪H), whereas the third phase deals with
the offloading of tasks if a computing node is overloaded or fails.
The problem is formulated as follows.

A. Problem Formulation

For maintaining the service latency and makespan trade-
off, the task scheduling in fog–cloud architecture is modeled
as a DAG G = {v, E, τ, ϕ}. The set M{12, . . . ,m} ∪
H{12, . . . ,m} ∈ v consists of fog and cloud computing nodes,
and T{12, . . . , n} ∈ v is the number of tasks. Each i(∈ T)
in a vertex is a particle to be assigned to a computing node
(M |H) in the vertex. Each edge e = {vi, vj} represents the
interdependency among tasks in the considered multiprocessing
environment. We assume that the incurred latency and comple-
tion time depend on the distance between vi and vj , and the
current load of the node.

The objective of this research is to find the optimal mapping
(Xj

i) of tasks to the underlying computing nodes to reduce the
service latency and the degree of makespan. Consequently, the
hard deadline (TH

i) and the soft deadline (TS
i) based tasks are

to be allocated to the cloud VMs j ∀j ∈ H and collaborative
fog nodes j, ∃j ∈ M to reduce the overall offloading time and
service latency. However, the tasks without a deadline and low
latency are offloaded to local fog nodes j, ∃j ∈ M . Therefore,
the problem of task scheduling for our research can be mod-
eled as follows: for a given set of tasks and computing nodes
(M ∪H), a task i is assigned to a jth computing node. When it
is assigned, a great deal of service latency and completion time
is experienced with low resource utilization. Therefore, the ob-
jective is to reduce the service latency (Loffloading

ij) (transmission,
computation, and acknowledgment) and makespan (ℵj).

Makespan (ℵ) can be defined as the maximum of all the com-
pletion time allocated to a jth computing node and expressed in
milliseconds. If the completion time of the ith task on the jth
computing node is denoted as CTij , then the makespan (ℵ) for
a jth computing node is expressed in (7), where Li is the length
of the task Ti and PTj is the processing time of jth node

ℵ = max
∑

CTij

(
=

Li

PTj

)
, s. t. ∀ (M ∪H) . (7)

The mathematical formulation of the objective function is as
follows:

minimize Loffloading
ij + ℵj ∀i ∈ T ∀j ∈ (D ∪M ∪H) (8)

Fig. 3. Task prioritization at fog layer 1.

subject to the following constraints:

n∑
i = 0

Lij ×Xj
i ≤ CT ∀j ∈ D ∀i ∈ (

TH
i ∪ TS

i

)
(8a)

UCPU
i andUMM

i ≤ dCPU+MM
j , ∀i ∈ T,

∀j {1, 2, . . . ,m} ∈ (M ∪H) (8b)

Xj
i ∈ {1, 0} (8c)

|T |∑
i = 1

Xj
i = 1 ∀i ∈ T (8d)

LT (i, j) ≥ 0, and LAck(i) ≥ 0. (8e)

Constraint (8a) states that the associated deadline must be
greater than the total completion time of the tasks. Constraint
(8b) implies that the CPU frequency and the memory usage of
a task should be less or equal to the jth computing node. Con-
straint (8c) represents the optimal mapping with discrete values.
Constraint (8d) ensures that each task would be allocated to at
most one computing node. Finally, constraint (8e) guarantees
that the transmission time (LT (i, j)) and the acknowledgment
time (LAck(i)) should not be negative.

B. Tasks Prioritization

Each task is associated with some priority and deadline
constraints. It is essential to classify the tasks based on their
requirements and determine the target layers for offloading
them to meet the QoS objectives. For task scheduling in a
multiprocessing environment, reducing the incurred delay and
meeting the deadline are two crucial factors. In this model, tasks
are prioritized based on their requirements by the task classifier
(see Fig. 3) at the fog layer 1. Besides, the fuzzy logic determines
the target layers (see Fig. 4) for offloading in order to reduce the
associated delay and the completion time while satisfying the
deadline constraint. As shown in Fig. 3, the generated tasks
from IoT devices are arrived and placed in a global queue
(denoted as Q). Based on the tasks’ requirements, we categorize
each task into three groups, such as Group P1, Group P2, and
Group P3 using a FLA. This grouping of tasks facilitates the

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

CHAKRABORTY et al.: INTELLIGENT LTPO STRATEGY IN DISTRIBUTED FOG-CLOUD OF THINGS 2103

Fig. 4. Offloading decisions using FLA.

concurrent execution of each task at different layers thereby pre-
venting aging and starvation in a multiprocessing environment.
So, Group P1 consists of all the tasks with high priority and
hard deadline. These tasks require more resource-intensive and
memory-intensive computing nodes for processing. Therefore,
this category of tasks is processed by cloud VMs (denoted
as Q1) due to the resource-intensive nodes to minimize the
average completion time thereby minimizing the service latency.
Group P2 encompasses tasks with intermediate-priority and soft
deadline. This type of task does not comply with the deadline by
compromising the service latency and is acceptable if a task fails
to meet the deadline. Therefore, this category of tasks requires a
mix of homogeneous and heterogeneous nodes to be processed.
Hence, collaborative fog nodes (denoted as Q2) are suitable for
processing such tasks. Finally, GroupP3 consists of low-priority
without deadlines requiring not much resource and memory
capacity for getting serviced. Thus, it will be processed locally
at local fog nodes (denoted as Q3).

The proposed FLA shown in Fig. 4 consists of three primary
units, such as fuzzy inputs, fuzzification, and defuzzification.
Fuzzy inputs are the initial parameters of the fuzzification pro-
cess. Based on the tasks’ requirements, four input parameters
are considered, such as task size (MI), latency sensitivity, dead-
line sensitivity, and network bandwidth. Each factor represents
the tasks’ heterogeneity for scheduling in fog-cloud of things.
These input parameters are represented as lexical variables in
the form of high, medium, and low. We assume that the hard
and soft deadlines are represented with high and medium, and
a task without a deadline is characterized as low. The fuzzifier
in the fuzzification process accepts all the input parameters and
computes against fuzzy membership functions defined in the
fuzzy knowledge base. Membership functions are used to access
the linguistic value for each fuzzy input. Four membership
functions based on tasks’ requirements and three specifications
(high, med, and low) are defined. Furthermore, input parameters
are processed by an inference engine. This engine generates
fuzzy inferences or rules comprising a set of simple if-else
conditions by covering all the probabilities of the system as
well as application specifications. For instance, an inference
Ii, i ∈ { 1, 2, . . . , n} can be expressed as if the task size is low
AND the latency sensitivity is low AND the deadline sensitivity
is low AND the network bandwidth is low THEN offload the

TABLE I
OBTAINED FUZZY INFERENCES

corresponding task to the local fog node, and otherwise. The
resulted inferences are presented in Table I. Defuzzification is
then performed to transform the fuzzy inferences into suitable
values based on membership functions.

C. Tasks Scheduling

Since task scheduling is an NP-hard problem due to the
involvement of the numerous conflicting QoS objectives, an
efficient yet powerful technique is essential in the proposed
three-layered architecture to minimize the waiting time and
completion time. Therefore, we consider an EMPJ metaheuristic
optimization algorithm for the optimal scheduling of tasks on
the computing nodes. It is an extension of the standard Jaya
algorithm to alleviate the performance. This algorithm is suitable
for our proposed problem because it deals with multipopulation
analogous to the multiple clusters in the fog layer. Moreover, it
trades off between exploration and exploitation by evading the
worst solutions. The new population (Pnew) is generated through
the old population (Pold) in the following:

Pnew = round (Pold + r × Pold) . (9)

Each particle in the problem space undergoes a fitness func-
tion to get evaluated to find the best position among themselves.
Afterward, each particle updates its position according to its
fitness value using (8). If Xk

q, i is the current position of the qth
variable for the ith particle in the kth iteration, then the updated
position (X̄k

q, i) is estimated using the following:

X̄k
q, i = Xk

q, i + n1

(
Xk

q, besti −
∣∣Xk

q, i

∣∣)

− n2

(
Xk

q, worsti −
∣∣Xk

q, i

∣∣) . (10)

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

2104 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023

Algorithm 1: Task Scheduling Algorithm Using Binary
EMPJ.

Input Number of IoT devices Dj , number of dynamic
dependent tasks Ti, number of computing nodes
Nj , j ∈ (M ∪H).

Output Optimal mapping Xj
i of task Ti to a

computationally efficient computing node Nj .

1. for i = 1: n, evaluate particles’ fitness through (8);
if(F < BESTi)

Set the new fitness value as the BESTi;
2. for i = 1: n, find an updated class of positioning by

estimating particles’ position using (10);
3. Modify the solution by transforming current solutions

into discrete solutions through (11) and (12);
4. continue till the maximum iteration is reached;

while (maximum iteration �= met)
Produce a new series of the population through (9);

if (Pnew > Pold)
augment the optimal solutions in the new
population to the (Pnew − Pold) solutions;

else if (Pnew < Pold)
augment the optimal solutions in the current
population to the Pnew solutions;

else if (Pnew < m)
assign Pnew = m;

else
Output the optimal mapping;

5. Return the optimal solution as the efficient mapping of
tasks to computing nodes;

Here, n1 and n2 are the arbitrary numbers (0.5), Xk
q, besti and

Xk
q, worsti are the best and the worst solutions for the ith particle

in the kth iteration.
All these generated continuous solutions are not suitable to

represent the assignment matrix (Xj
i). Hence, these are trans-

formed into binary solutions for mapping tasks onto resources
with discrete values. It is computed using the following:

tanh
(∣∣ X̄k

q, i

∣∣) = e(|2 X̄k
q, i|) − 1

e(|2 X̄k
q, i|) + 1

. (11)

The updated value ofXk+1
i is then represented in binary form

using the following:

X̄k
q, i =

{
1, if rand() < tanh

(∣∣ X̄k
q, i

∣∣)
0, otherwise

. (12)

Algorithm 1 illustrates the proposed EMPJ algorithm.

D. Tasks Offloading

For the task offloading, it has been assumed that the fog nodes,
as well as the Cloud VMs, are connected with all the intermediate
nodes at the edge of the network. We assume that the CH of each
cluster synchronizes with either other CHs or cloud information
service for the offloading of heavy computation-intensive tasks.

Here, a heuristic approach is used for identifying a compatible
computing node for each overloaded task to maintain the tradeoff
among loads. So, the proposed heuristic identifies a compatible
node j for the overloaded taskTk, which meets the deadline with
minimum transmission and computation time.

For the migration, several processing cores (CPU), storage,
and bandwidth are the resource usage constraints for each task
(denoted as

−→
Ti) to be offloaded on a jth computing node.

Therefore, the total resources used (
−−−−→
Rused,j) and the total re-

sources available (
−−−−→
Ravail,j) for each underloaded computing node

Au
j {∈ (M ∪H)} is estimated as follows:

−−−−→
Rused,j =

n∑
i=1

−→
Ti (13)

−−−−→
Ravail,j =

−−→
Rtotal −−−−−→

Rused,j . (14)

Here,
−−→
Rtotal is the total resources of the jth underloaded node

Au
j .
Finding the similarity between the tasks of overloaded nodes

(T o
k) and the underloaded nodes (Au), cosine similarity (σ) is

evaluated using (15). The smaller value of σ means the greater
similarity between tasks (T o

k) with total resources. Now, the
compatibility (θ) between each task with the underloaded nodes
(Au) is estimated to identify a suitable computing node based on
the cosine similarity value and the degree of utilization. Hence,
with the best compatibility, a suitable computing node for a task
Tk is selected using (16), where β is set to 0.5

σ = cos−1

⎛
⎝ −→

Tk ×−−−−→
Ravail, j∣∣∣−→Tk

∣∣∣ ∣∣∣−−−−→Ravail, j

∣∣∣

⎞
⎠ (15)

θ = β × σ + (1 − β)× Uj . (16)

The proposed heuristic-based tasks offloading policy main-
tains the tradeoff by preventing the computing nodes from
getting overloaded or underloaded and selecting the most com-
patible node for the tasks offloading based on resource usage
factors and the degree of utilization.

IV. PERFORMANCE EVALUATIONS

This section illustrates the performance evaluation of the
proposed strategy and the comparative assessment of the existing
literature [14]–[19] in terms of average waiting time, average
latency rate, and the number of tasks meeting the deadline
constraint.

A. Simulation Setup

We consider 60 IoT devices deployed widely that produce
tremendous tasks in a span of Δt time with disparate lengths
ranging from 0 to 15 000 (MI). To process these enormous,
computational-intensive tasks, various fog nodes and VMs with
disparate specifications are deployed in fog and cloud layers,
respectively. The transmission bandwidth from IoT devices to
the fog nodes and VMs is 102 400 Hz. Empirical simulations for
each considered objective are carried out with 30 independent

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

CHAKRABORTY et al.: INTELLIGENT LTPO STRATEGY IN DISTRIBUTED FOG-CLOUD OF THINGS 2105

TABLE II
SIMULATION PARAMETERS

Fig. 5. Performance analysis of average waiting time (a) of different
deadlines and (b) (tasks x nodes) heterogeneity.

runs and the mean values are considered for finding the optimal
results. For the simulations, the iFogSim is used as a simula-
tor over the CloudSim for enabling a virtualized environment.
We assume 50 particles as the population size and 100 as the
maximum termination point for the binary EMPJ algorithm. A
real-world benchmark dataset [20] is considered to validate the
effectiveness of the proposed algorithm. This dataset consists
of the diverse tests set, such as uniformly generated data (u),
nature of consistency (x) [consistent (i), semiconsistent (s),
and inconsistent (i) tasks], tasks heterogeneity (t), and machine
heterogeneity (m). These diversified tasks are represented in
a matrix called the estimated time to compute matrix. This
matrix consists of 12 instances of tasks set based on the tasks’
requirements in the form of u_x_tm subject to high (h) and low
(l). Table II summarizes the considered simulation parameters.

B. Performance Analysis on Average Waiting Time

This time refers to the time taken by each task while waiting in
the ready queue till getting allocated to the compatible comput-
ing node for computation. This time impacts the performance,
especially when the tasks are of different types with disparate
requirements. Therefore, this time should be reduced to improve
the overall performance. Problems like starvation and aging
could be possible for both high and low priority-based tasks. Due
to the concurrent execution of these tasks by computationally
intensive computing nodes on different target layers, these two
problems have been avoided to maintain a minimized waiting
time. Fig. 5 depicts the performance of the average waiting time
for different existing algorithms.

Fig. 6. Performance analysis of average latency rate (a) for different
deadlines and (b) (tasks x nodes) heterogeneity.

Fig. 5(a) illustrates the waiting time for the tasks with dif-
ferent deadlines. As depicted in Fig. 5(a), the time taken by
hard-deadline-based tasks is less in comparison to the soft-and-
no-deadline-based tasks due to the associated priorities, different
requirements, and computation by disparate computationally-
intensive nodes. Fig. 5(b) presents the obtained simulation
results for the proposed algorithm with the existing methods
[14]–[16]. It is evident that the proposed method tackles the tasks
with different latencies and deadlines effectively. Consequently,
the waiting time for each task is considerably reduced, which in
turn impacts the average waiting time. Moreover, the proposed
method outperforms other compared methods.

C. Performance Analysis on Average Latency Rate

This factor minimizes the latency time for each task on com-
pletion during offloading, computation, and acknowledgment.
So, this rate influences the performance of the system. Due to
the disparate requirements of tasks, this parameter varies for
different groups of tasks. When the size of the tasks increases
along with their communicational and computational require-
ments, it becomes difficult to reduce the associated latency.
Therefore, the proposed approach uses a FLA to determine the
offloading layer for processing to minimize the average latency.
Moreover, Fig. 6(a) shows the performance analysis of tasks with
different deadlines for increasing tasks. It depicts that the latency
time of higher priority (hard deadline) based tasks is lower
than the lower priority or without priority. Fig. 6(b) presents
the performance comparison for the average latency rate of the
proposed method versus the existing methods [14], [16]–[18].
The proposed method reduces the latency time considerably
for the increasing tasks with disparate deadlines, delays, and
priorities.

D. Performance Analysis on Several Tasks Meeting the
Deadline

This constraint implies that the tasks satisfy their deadline
with their requirements. This factor primarily depends on the
average waiting time in the ready queue and the transmission
time of each task on different target layers for processing.
Fig. 7(a) depicts the satisfying rate for hard-deadline-based
tasks. It is clear from the results that the time taken for meeting
the deadline for hard-deadline-based tasks is lower than the

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

2106 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023

Fig. 7. Average number of tasks satisfying their deadlines. (a) Hard
deadline. (b) Soft deadline.

soft-deadline-based tasks [see Fig. 7(b)]. In a hard-deadline-
based approach, the tasks meet their required deadline while
processing on a compatible computing node. In some cases,
the soft-deadline-based tasks fail to meet the deadline due to
the resource-limited, and computationally ill nodes. Therefore,
the failed tasks are then offloaded to compatible target lay-
ers. Fig. 7(b) shows the performance analysis of the proposed
method for soft-deadline-based tasks. As a result, the proposed
method performs better than the compared methods [14], [16],
[19] for a varying number of tasks.

The percentages of improvements of the proposed algorithm
over the compared algorithms are 35% and 28% for average
waiting time and average service latency, respectively.

V. CONCLUSION

This article addressed the task prioritization and offloading
policy in a three-layered architecture with a fuzzy logic. The
primary objective of this research was to reduce the average
waiting time and incurred latency while satisfying the deadline
constraints. Moreover, the proposed strategy considered the pri-
ority of each task and placed them in the corresponding queues
to be scheduled by one of the compatible nodes. The concurrent
execution of each type of task in different target layers prevented
starvation and aging. Besides, it used a binary EMPJ algorithm
to schedule the varying tasks to find the optimal mapping.
Both the tasks’ and machines’ heterogeneity were considered
to appraise the efficacy of the proposed algorithm. The obtained
experimental results showed the effectiveness of the proposed
algorithm over other compared algorithms for disparate QoS
conflicting objectives.

As a part of future work, we plan to expand it by deploying
containers in place of VMs and shifting toward serverless com-
puting at the fog layer for more diversified and optimal results
while satisfying the intensive-rich data.

REFERENCES

[1] C. Chang, S. N. Srirama, and R. Buyya, “Internet of things (IoT) and
new computing paradigms,” in Fog and Edge Computing: Principles and
Paradigms. Hoboken, NJ, USA: Wiley, Feb. 2019, pp. 1–23.

[2] L. Yang, K. Yu, S. X. Yang, C. Chakraborty, Y. Liu, and T. Guo, “An
intelligent trust cloud management method for secure clustering in 5G
enabled internet of medical things,” IEEE Trans. Ind. Informat., to be
published, doi: 10.1109/TII.2021.3128954.

[3] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method for
minimizing service delay in edge cloud computing through VM migration
and transmission power control,” IEEE Trans. Comput., vol. 66, no. 5,
pp. 810–819, May 2017.

[4] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards
minimizing delay in the internet of things,” in Proc. Int. Conf. Edge
Comput., 2017, pp. 17–24.

[5] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an
offloading scheme for data centers in the framework of fog computing,”
ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1, no. 4, Sep. 2016,
Art. no. 16.

[6] M. Taneja and A. Davy, “Resource aware placement of IoT application
modules in fog-cloud computing paradigm,” in Proc. IFIP/IEEE Symp.
Integr. Netw. Service Manage., 2017, pp. 1222–1122.

[7] D. G. Roy, D. De, A. Mukherjee, and R. Buyya, “Application-
aware cloudlet selection for computation offloading in multi-cloudlet
environment,” J. Supercomput., vol. 73, no. 4, pp. 1672–1690,
2017.

[8] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware
resource allocation for edge computing,” in Proc. Int. Conf. Edge Comput.,
2017, pp. 47–54.

[9] J. Y. Zhang et al., “Optimizing power consumption of mobile devices for
video streaming over 4G LTE networks,” Peer-Peer Netw. Appl., vol. 11,
no. 5, pp. 1101–1114, 2018.

[10] H. O. Hassan, S. Azizi, and M. Shojafar, “Priority, network and
energy-aware placement of IoT-based application services in fog-
cloud environments,” IET Commun., vol. 14, no. 13, pp. 2117–2129,
2020.

[11] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou,
“MEETS: Maximal energy efficient task scheduling in homogeneous fog
networks,” IEEE Internet Things J., vol. 5, no. 5, pp. 4076–4087, Oct.
2018.

[12] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang,
“Multitier fog computing with large-scale IoT data analytics for
smart cities,” IEEE Internet Things J., vol. 5, no. 2, pp. 677–686,
Apr. 2018.

[13] K. Mishra, R. Pradhan, and S. K. Majhi, “Quantum-inspired binary
chaotic salp swarm algorithm (QBCSSA)-based dynamic task scheduling
for multiprocessor cloud computing systems,” J. Supercomput., vol. 77,
pp. 10377–10423, 2021.

[14] S. S. Tripathy, D. S. Roy, and R. K. Barik, “M2FBalancer: A mist-assisted
fog computing-based load balancing strategy for smart cities,” J. Ambient
Intell. Smart Environ., vol. 13, no. 3, pp. 219–233, 2021.

[15] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang, “DEBTS:
Delay energy balanced task scheduling in homogeneous fog net-
works,” IEEE Internet Things J., vol. 5, no. 3, pp. 2094–2106, Jun.
2018.

[16] S. Sharma and H. Saini, “A novel four-tier architecture for delay aware
scheduling and load balancing in fog environment,” Sustain. Comput.:
Inform. Syst., vol. 24, 2019, Art. no. 100355.

[17] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestration
for edge computing,” IEEE Trans. Netw. Service Manage., vol. 16, no. 2,
pp. 769–782, Jun. 2019.

[18] J. Almutairi and M. Aldossary, “A novel approach for IoT tasks offloading
in edge-cloud environments,” J. Cloud Comput., vol. 10, no. 1, pp. 1–19,
2021.

[19] X. Xu et al., “Dynamic resource allocation for load balancing in fog
environment,” Wireless Commun. Mobile Comput., vol. 2018, 2018,
Art. no. 6421607.

[20] T. D. Braun et al., “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed comput-
ing systems,” J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810–837,
2001.

[21] Y. Wu, H. Guo, C. Chakraborty, M. Khosravi, S. Berretti, and S.
Wan, “Edge computing driven low-light image dynamic enhancement
for object detection,” IEEE Trans. Netw. Sci. Eng., to be published,
doi: 10.1109/TNSE.2022.3151502.

[22] C. Chinmay, K. Amit, and J. P. C. R. Joel, “Novel enhanced-grey wolf
optimization hybrid machine learning technique for biomedical data com-
putation,” Comput. Elect. Eng., vol. 99, pp. 1–15, 2022, Art. no. 107778.
[Online]. Available: https://doi.org/10.1016/j.compeleceng.2022.107778

[23] H. K. Bhuyan, C. Chakraborty, S. K. Pani, and V. Ravi, “Feature
and sub-feature selection for classification using correlation coeffi-
cient and fuzzy model,” IEEE Trans. Eng. Manage., to be published,
doi: 10.1109/TEM.2021.3065699.

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on December 16,2022 at 10:23:15 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TII.2021.3128954
https://dx.doi.org/10.1109/TNSE.2022.3151502
https://doi.org/10.1016/j.compeleceng.2022.107778
https://dx.doi.org/10.1109/TEM.2021.3065699

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

