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Some interesting findings of this work are that the augmen-
tation works well as this avoids over-fitting of the model. 
Sharpening as a post-processing technique has come up with 
a considerable amount of rise in the performance. Here, we 
prefer to use the metric as Intersection over Union (IoU) 
instead of accuracy as it is not as affected by the class imbal-
ances that are inherent in foreground/background segmenta-
tion tasks. With the proposed methodology, we achieve an 
averaged IoU of 85.6 which is far better compared to the 
IoU achieved with the Segnet approach which stands at 77.

Keywords  Salt deposits · Segmentation · Semantic 
segmentation · Convolutional neural network (ConvNet) · 
UNet · SegNet · Seismography · Salt domes · Intersection 
over Union (IoU)

Introduction

Several areas of the Earth that are rich in oil and natural gas 
also have massive salt deposits beneath the surface [1]. Due 
to the extremely low permeability of the salt, reservoirs of 
hydrocarbons such as natural gas or crude oil are trapped 
by overlying rock-salt formations. Hence, oil and gas explo-
ration companies rely on the precise location of large salt 
deposits to identify hydrocarbon reservoirs such as crude 
oil or natural gas [2]. This task necessitates the visualization 
of underground structures, which is possible with seismic 
imaging [3]. Seismic imaging involves the emission of sound 
waves into underground structures of the Earth. The reflec-
tion of those sound waves from the various structures will 
be detected using Geo-phones and saved for the subsequent 
process of generating the 3-dimensional representation of 
the underground structures [4]. The process involved in seis-
mic imaging is depicted in Fig. 1. Seismic images provide 

Abstract  Many areas of Earth’s surface with large accu-
mulations of gas and oil even have huge deposits of salt 
under the surface. Exploring such deposits helps many 
countries to increase the storage capacity of their Petroleum 
reserves and explore new ones. But finding such deposits is 
a herculean task. Expert seismic imaging requires human 
interpretation of salt bodies. But this leads to very biased 
and highly variable translations. So the idea behind this 
paper is to build an approach that accurately and automati-
cally identifies if the seismic image contains any region of 
salt deposit or not. If a surface is found to have salt deposits, 
then it may contain the accumulations of oil or gas and even 
the salt domes or caverns can be used as a storage site for 
already available petroleum or oil. Since semantic segmen-
tation classifies every pixel in the given image to its class 
label, this can be used to segment the salt deposits from the 
provided seismic images. In this paper, we introduce a vari-
ation of UNet, a popular segmentation model, for seismic 
image segmentation. We have added a batch normalization 
layer following every convolution layer as a deeper network 
helps extract better features which turned out to be true. 
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more information about the edges of various rocks, which 
can be used to determine whether or not a specific rock is in 
contact with a salt dome [5].

Figure 2 depicts a seismic image of a salt dome deform-
ing the surrounding rocks, forming a trap for natural gas 
or oil. Unfortunately, the exact identification of large salt 
deposits from seismic images is notoriously difficult and 
often requires manual interpretation of seismic images by 
the domain experts [8]. Manual interpretation is not only 
time-consuming and expensive but also involves human 

bias, which can put oil exploration companies in potentially 
dangerous situations. In recent years, a number of machine 
learning tools have been introduced for the automatic inter-
pretation of seismic images to speed-up the interpretation 
process and, to some extent, reduce the human bias [9]. Salt 
region detection from the seismic images can be posed as a 
classification, localization or semantic segmentation prob-
lems as shown in Fig. 3. If the problem is posed as a classi-
fication task, then the model simply needs to check whether 
the given seismic image contains salt deposits or not. Several 
machine learning models have been introduced in the lit-
erature for the classification of seismic images based on the 
existence of salt domes in the images [10]. Convolutional 
neural networks (CNNs) proved to be successful for solv-
ing variety of real-world problems in computer vision such 
as object detection [11] and image classification [12, 13] 
problems even with small number of training data [14, 15]. 
Successful application of CNNs piqued the interest of the 
research community in the application of CNNs for analyz-
ing seismic images [16].

In addition to identifying the presence of salt deposits, 
sometimes it is essential to draw a boundary box represent-
ing the region of salt domes in the given seismic images, 
and hence this problem can be posed as a segmentation task. 
Separating the salt body from the rest of the background is 
especially important, which can be accomplished by clas-
sifying every pixel in the seismic image as salt region or 
not, and the task can be better posed as semantic segmenta-
tion [16]. Semantic segmentation task on seismic imaging 
has drawn focus of the research community by the launch 
of the competition held by TGS [17]. Semantic segmenta-
tion task is much more challenging than image classification 
[18], detection [19] and localization [20] tasks, and hence, 
the conventional machine learning approaches may not be 
appropriate for such complex tasks [4]. Standard convolu-
tional neural network focuses its task on image classifica-
tion, while segmentation requires producing the entire input 
image with the predicted mask. Encoder–decoder models 
such as UNet, SegNet, DeconvNet and FCN have become 

Fig. 1   Depicting the process involved seismic imaging [6]

Fig. 2   Visualization of oil trapped between Salt Dome and surround-
ing rocks [7]

Fig. 3   Posing salt dome detection from seismic images as a classification b localization and c semantic segmentation problems
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popular for salt dome segmentation from seismic imaging 
[21]. UNets are a variant of convolutional networks basi-
cally designed for semantic segmentation and are popular in 
the medical imaging domain. Numerous works have come 
up applying these UNet architectures for semantic segmen-
tation of salt domes from seismic images. However, their 
performance is sub-optimal and still there is huge scope for 
improvement in the generalization of these models.

In this work, we present an efficient approach for seg-
menting salt deposit regions from seismic images. We 
approach the problem using semantic segmentation, 
in which each pixel of the seismic image is identified as 
belonging to a salt deposit region or not. We propose an 
improved version of the UNet architecture for segmenting 
salt regions from seismic images. Initially, all the images in 
the dataset are pre-processed, and the training images are 
used to train the proposed improved UNet architecture. The 
contractive path of the UNet is designed with a sequence of 
convolution operations interleaved with max pooling lay-
ers, where the expansion path is designed with transpose 
convolution operations. The UNet layers are designed in 
such a way that they promote better generalization and the 
masked regions are further post-processed for improving the 
scores. A high-pass filter is applied to the masks generated 
by the UNet to smooth out the segmentation. Augmentation 
is applied on the training dataset to avoid over-fitting of the 
proposed model and improve generalization. The proposed 
approach is evaluated on the publicly available benchmark 
TGS dataset. The proposed UNet architecture along with the 
sharpening operation as a post-processing technique resulted 
in significant increase in performance. The Intersection of 
Union (IoU) scores obtained by the proposed model are 
much better compared to the baseline models.

The method presented in this paper is based on the 
author’s participation and it relies on training a deep con-
volutional neural network (CNN) for semantic segmenta-
tion. The architecture of the proposed network is inspired by 
the UNet model in combination with ResNet and DenseNet 
architectures. To

Literature Survey

Many researchers are drawn to the task of identifying and 
segmenting salt deposit regions in seismic images because 
it reveals the presence of hydrocarbon reserves. We intend 
to present a review of existing machine learning and deep 
learning approaches for salt deposit region segmentation in 
this section.

During the early stages, researchers considered using a 
variety of hand-crafted feature extraction approaches for the 
analysis of seismic images [4]. The work of Halpert and 
Clapp revealed that features extracted by a single feature 

extraction algorithm may not lead to accurate region seg-
mentation. They also proposed using additional features 
such as dip variability, amplitude and frequency content of 
seismic image and demonstrated that using these additional 
features improves the segmentation results when compared 
to the existing approaches [9]. Following this, many other 
works were presented, including SalSi, which develops 
novel seismic attributes for salt mine identification [22]. In 
the subsequent methods, study of the 3D seismic images 
became a subject of interest [23]. The work of Amin and 
Deriche [1], which uses a multi directional edge detector, is 
worth discussing. Instead of focusing solely on the edges, 
their method computes gradients along the edges in combi-
nation with the diagonals. This makes the algorithm efficient 
although the dips along the salt edges are not so certain. 
Since this method is not affected by amplitude variations, it 
outperforms existing texture and gradient-based techniques. 
This method includes calculating the edge map of 3D seis-
mic images and normalizing the data to improve the quality 
of the salt dome edges [24]. This is followed by the compu-
tation of gradient magnitudes in all the x, y, z and diagonal 
directions. The skeleton of the salt boundary is then obtained 
by blending and thresholding all of the available edge maps.

Research on salt deposit region segmentation has grown 
at an exponential rate since the introduction of neural net-
work models and their success in real-time applications. 
Convolutional neural network (CNN) architectures, which 
were originally designed for classification, were success-
fully extended to perform segmentation. Among these, 
encoder–decoder models such as fully convolutional net-
work (FCN), UNet, SegNet and DeconvNet have become 
popular for salt dome segmentation from seismic imaging 
[12]. FCNs are the simple extension to CNNs which are 
designed by replacing the final dense layers of CNN with 
convolutional and upsampling layers [16]. Finally, after 
upsampling to the required size, layers required for pixel 
level classification are attached to obtain the region predic-
tion. The efforts toward comparing the performance of FCN 
with traditional approaches revealed that FCNs consider the 
local seismic patterns while learning the target region from 
seismic images, and hence avoid the coherent noises [5]. 
Another intriguing aspect is that, unlike traditional machine 
learning models, these deep neural network models are capa-
ble of directly learning features required to construct map-
ping between the input seismic signals and the target salt 
bodies, avoiding the need for manual attribute selection.

Among the encoder–decoder models, UNet-based archi-
tectures are popular due to their success in the medical imag-
ing domain. UNet is a variant of convolutional networks 
basically designed for segmentation of regions of interest 
from the images. Unlike the conventional segmentation 
approach, UNet applies pixel-wise classification to obtain 
the region of interest. The encoder component of these 



572	 J. Inst. Eng. India Ser. B (June 2023) 104(3):569–578

1 3

models is designed to reduce the spatial dimensions of the 
input image while increasing the number of channels. The 
output tensor produced by the encoder, called as the bot-
tleneck layer and is passed as input to the decoder [25]. The 
decoder then enhances the spatial dimensions while decreas-
ing the number of channels. The output layer of the model 
is designed to restore the spatial dims and to make a predic-
tion for each pixel in the input image. In recent years, more 
complicated architectures of CNN like SegNet [21] and 
DeconvNet [25] have been successfully applied to segment 
interested objects from the rest of the images. SegNet and 
DeconvNet models follow similar architectures except with 
some slight variations. Both of these networks consist of the 
encoder and decoder kind of structure in which the encoder 
is a classification CNN without the top layer while the 
decoder consists of same layers in the reverse order usually 
referred to as the transposed convolution or upsampling fol-
lowed by the convolutional layers. In the proposed approach 
below, we introduce a variation of the UNet [26] such that 
it fits best to the current application. Here, 2D images are 
used unlike in the existing approaches [27] that process 3D 
data. The proposed methodology is novel in the process of 
training along with the variations made to the UNet.

Several deep convolutional neural networks (CNNs) are 
introduced for semantic segmentation of salt bodies from 
seismic images. A squeeze-extraction feature pyramid net-
works (Se-FPNs) achieve high-quality segmentation effect 
[28]. The squeeze-extraction approach of the model learns 
to suppress irrelevant regions in seismic images while high-
lighting salient features useful for the task. The architecture 
inspired by the UNet model in combination with ResNet and 
DenseNet architectures is comparable and, in most cases, 
results in better results [29]. An improved encoder–decoder 
deep neural network model was introduced for salt domes 
and faults identification that alleviates the scarcity issue of 
labeled seismic data by following transfer learning approach 
[30]. The success and applicability of these DNN models 
are subject to the availability of labeled data, which incurs 
costs associated with manual annotations. Addressing this 
limited labeled data issues, augmentation approaches are 
widely used to generate synthetic data. A data augmenta-
tion method based on training two generative models was 
used to augment the number of samples in a seismic image 
dataset [31]. This method employs two generative models: a 
variational autoencoder to generate salt body mask patches, 
and the conditional normalizing flow model to receive the 
generated masks and generate the associated seismic image 
patches. Semi-supervised approaches utilize unlabeled data 
to address issues associated with limited data resources. A 
semi-supervised approach for segmentation of salt bodies in 
seismic images outperforms state-of-the-art on the TGS Salt 
Identification Challenge dataset and is ranked first among 
3234 competing methods [8].

Methodology

Main aim of this work is to segment the salt deposit regions 
from the rest of the given seismic images. The architecture 
of the proposed model, training approach and the other 
technical details are discussed in this section. The proposed 
architecture is derived from the UNet architecture [26]. Our 
proposed UNet model is entirely different the original UNet 
architecture in terms of the number of blocks, number of 
filters at each layer, introduction of batch normalization [32] 
layers, and many others to make it suitable to the segmen-
tation of the salt deposit regions from the seismic images.

Pre‑processing

As a preprocessing technique, the training images of size 
101 × 101 are loaded and resized to 128 × 128 to make them 
suitable for passing through the proposed UNET model. For 
image resizing, the nearest-neighbor interpolation method 
is used. The images in the dataset have pixel values rang-
ing from 0 to 255, making the computation of these large 
numeric values more complex using deep neural network 
models. Images are normalized such that each pixel is re-
scaled to a range of 0 to 1 by dividing each pixel by 255 to 
reduce the computation complexity of the deep neural net-
work models that are used for further segmentation.

Proposed Network Architecture

The proposed network is derived from the UNet architecture. 
UNet, being a popular approach to be used for segmentation 
tasks, applies classification on each and every pixel in the 
given input image and thereby produces a mask of the same 
size as input.

The proposed network contains four convolution blocks 
each in the contraction path and expansion paths. The pro-
posed model uses batch normalization with every convolu-
tion layer.

The network shown in Fig. 4 takes a seismic image of 
size (128 × 128 × 1) as input. It follows an encoder–decoder 
kind of structure, the encoder part encodes the given seismic 
image using different pooling techniques. Both the encoder 
and decoder modules of the UNET contain four blocks. The 
encoder extracts the information of “what” is present in the 
image and produces a representation of 128 × 128 × 64 . The 
decoder part of the architecture increases the size of encoded 
representation produced by the encoder and extracts the 
information of “where” in the given image. In the contract-
ing path, each block contains two consecutive convolution 
layers followed by a max pooling layer.

The first block contains two convolution layers followed 
by a pooling and batch normalization layers which increases 
the input number of channels from 1 to 8. There are four 
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such blocks in the entire contraction path and by the end 
of all the four blocks, the channel count gets increased to 
the 64 channels since the process of convolution increases 
the depth of the image. Each convolution layer filter size is 
fixed to 3 × 3 . In Fig. 4, the arrow pointing down indicates a 
max pooling layer basically used to subsample the output of 
the convolution layer. The encoder module of the proposed 
model is designed with four convolution blocks at the end 
of the contraction path, the image size becomes 8 × 8 × 64 . 
The operation involved at every convolution layer can be 
represented mathematical as below. Consider a 3D sensor 
X ∈ ℝ

c×w×h a 3D tensor, where c is the number of channels, 
w, h are the width and height, respectively. The convolution 
operation performed between layers l and l + 1 , denoted by 
Xl+1 = Xl ∗ Wl and can be defined as follows:

Here, Xlinℝcl×wl×hl is the 3D tensor received at layer l; 
Wlinℝcl+1×cl×z×z is a set of cl+1 filters, with each filter of shape 
cl × z × z ; Xl+1inℝcl+1×wl+1×hl+1 is the 3D tensor output after 
the convolution operation and will serve as input to the l + 1 
layer in the network. The spatial dimensions of the output 
tensor wl+1, hl+1 are by default wl + z − 1 and hl + z − 1 , 
respectively, but one can also pad a number of zeros at the 
borders of Xl to achieve spatial dimensions unchanged.

(1)Xl+1 =
∑

c
�
∈[1,c],i

�
∈[1,z],j

�
∈[1,z]

Wl

k,c
�
,i
�
,j
� ∗ Xl

c
�
,i+i

�
−1,j+j

�
−1

(2)where k ∈ [1, cl+1], i ∈ [1,wl+1], j ∈ [1, hl+1],

Batch normalization is used for avoiding the over-fitting 
problem in the model training Here onwards, the expansive 
path starts where the model uses upsampling techniques to 
increase the size of the representation produced by the con-
traction blocks.

Here, transposed convolution is used as an upsampling 
technique which expands the size of images. Here, a pad-
ding operation is performed on the initial image followed 
by a convolution operation. Just like in the contraction path, 
here also there are four such blocks and by the end of these 
blocks, the image of original size is obtained. For the final 
prediction, a 1D convolution layer with a 1 × 1 kernel using 
sigmoid activation function is applied on the output of the 
last block. The 1D convolution helps in reduction of the 
number of channels to the required network output, while 
sigmoid activation function maps every pixel in the output 
block to the range of 0 to 1. The obtained values will be 
rounded to 0 or 1 to get the final predicted mask of the same 
size as the input image. At the end of the training, the model 
weights are saved and are used during inference (Fig. 5).

Generation of Random Mini‑batches from a Sampled 
Batch for Training

In the proposed methodology, we use random batch training 
[33] so that the trained model will not be biased toward the 
final set of samples from training data. In every iteration, 
we select a random batch of 400 samples from the available 
3200 images and from that 400, again another batch of 20 

Fig. 4   Proposed UNET-based architecture for segmentation of the salt deposit regions from seismic images
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samples is taken at random and is passed to the model for 
training.

Inferences by the Model and Post‑processing

During the inference stage, we apply post-processing on the 
outputs produced by the model. For each seismic image, 
after getting the prediction of the output mask, a sharpening 
technique is applied. This sharpening as a post-processing 
technique leads to a better visualization of the salt deposits 
present in the predicted mask thereby leading to a better IoU 
score. There are usually two filters known as low pass and 
high pass that are applied on the images to improve their 
visualization capacity. Low-pass filter application is referred 
to as smoothing, whereas the high-pass filter application is 
considered as the sharpening technique. A high-pass filter 
usually attenuates the low frequencies and allows high fre-
quencies to pass through them. This makes the pixels of salt 
in the predicted mask to pass through the filter and produces 
better scores. The following high-pass filter is applied for 

sharpening of the output masks as part of the post-process-
ing of the output masks produced by the model.

The details of each step followed during the inference stage 
and post-processing are outlined in Fig. 6

Experimental Studies

This section presents the experimental studies carried out to 
understand the performance of the proposed model for the 
identification of the regions with salt deposits in the given 
seismic images.

Details of the Seismic Image Dataset

The dataset used for the experimental studies is released by 
the world’s leading geoscience data company, TGS-NOPEC 
Geophysical Company (TGS), and is publicly available in 
Kaggle website [17]. This dataset comprises 4000 seis-
mic images of size 101 × 101 in which each pixel tells you 
whether the particular pixel area is salt or not. Out of the 
4000 images, 80% of the images were used for the training 
purpose and the rest of the images (20%) were used for the 
testing purpose. From the train split, 10% of the images are 
reserved for validation split, based on which hyper param-
eters are tuned and finalized. Few sample images from the 

⎡⎢⎢⎣

−2 − 2 − 2

−2 17 − 2

−2 − 2 − 2

⎤⎥⎥⎦
Fig. 5   Generation of Random mini-batches from a sampled training 
data

Fig. 6   Steps followed during the inference stage of the model
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dataset along with the corresponding masks are shown in 
Fig. 7.

Metrics Used

The performance of the model is monitored in the form of 
the metric Intersection of Union (IoU) [34], which was the 
most common metric used for the segmentation tasks. Dur-
ing the inference stage, an image is passed to the model and 
the model produces the classification value for every pixel 
of the input image. Now we calculate the IoU (Intersection 
over Union) value, a popular metric for segmentation tasks, 
by comparing both the predicted and original masks.

The interpretation of IoU of a particular image is the 
ratio between the intersection region and union regions 
of the ground truth mask and the prediction mask. Let 
Y be a 2D ground truth mask and Ŷ  be the 2D predicted 
mask and let the vectorized representations of Y and Ŷ  are 
Y1, Y2, Y3, ...Yn and Ŷ1, Ŷ2, Ŷ3, ...Ŷn , respectively. Let n rep-
resent the number of pixels and Yi be the ith pixel of the 
ground truth mask and Ŷi be the ith pixel of the prediction 
mask. As both ground truth and predicted masks are binary, 
Yi, Ŷi ∈ {0, 1},∀i ∈ [1, n] . Mathematical computation of IoU 
can be represented as follows:

Equation 3 can be rewritten as a form of the confusion 
matrix between Y and Ŷ  as shown in table 1

In Table 1, TP, FP, TN and FN indicate true positives, 
false positives, true negatives and false negatives, respec-
tively. IOU can be computed as:

(3)IOU(Y , Ŷ) =
Y ∩ Ŷ

Y ∪ Ŷ
=

Σn
i=1

min(Yi, Ŷi)

Σn
i=1

max(Yi, Ŷi)

Hyper Parameter Details of Model Training

While training the model the model is trained for 200 epochs 
using early stopping with a patience of 20 epochs. RelU 
activation function is used with each convolution layer of 
both the contraction and expansion modules and sigmoid 
activation is used with the final layer of the model. In both 
contraction and expansion paths, the same padding is used 
to make the outputs of the layers remain the same as those 
of input. The convolution layers of the encoder use kernels 
of size 3 × 3 , whereas the pooling layer uses a window of 
size 2 × 2 . Transpose convolution layers of the decoder use 
kernels of size 2 × 2 with row wise and column wise strides 
of 2,2. The learning rate is set to 0.01. Binary cross entropy 
is used as the loss function and the model is optimized using 
Adam optimizer. Data augmentation is applied to increase 
the training set which in turn avoids model over-fitting. 
Though we have experimented with different architectures, 
this proposed model proved to be more successful in terms 
of both complexity and performance.

Inference from the Model

In the testing phase, as shown in Fig. 6, we load the remain-
ing 20% data with images and masks. The weights that are 
saved earlier are loaded into the model and the model is 
used for the prediction of the masks for the given images. 
As a post-processing technique, we have used sharpening on 
the predicted masks which has shown some improvement. 
Figure 8 illustrates the effect of applying sharpening opera-
tion on the output masks. Compared to the masks without 
sharpening those with sharpening looks more smoother and 
helps to improve the scores of the model.

Results and Discussion

In this experiment, we present the segmentation result of the 
proposed model with different thresholds. For every seismic 
image, IOU value is computed using Eq. (3). If the IoU value 
of an image is greater than a certain threshold then its IOU 
value contributes to the computation of the IOU value of 
the dataset.

In equation 5, m is the number of images in the dataset, Di 
be the ith image and D is the dataset with m images. 1(a) is 
the indicator function and is computed as follows:

(4)IoU(Y , Ŷ) =
TP

TP + FN + FP

(5)IoU(D) =

m∑
i=1

1(Di) ∗ IoU(Di)

m

Fig. 7   Samples from TGS dataset showing the seismic images along 
with their corresponding masks for Salt Deposit Regions

Table 1   General confusion 
matrix

Y = 1 Y = 0

Ŷ = 1 TP FN

Ŷ = 0 FP TN
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where � is the threshold applied on IoU value. IoU on a 
threshold, � , indicates that a particular IoU value has crossed 
that threshold. For Example, a predicted output mask is con-
sidered to be valid over a threshold of 0.7 if the value of IoU 
is above 0.7 for that particular mask. Once the IoU of the 
dataset is computed, we vary the thresholds and compute the 
average IoU value for the dataset (Table 2). The average of 
IoUs over different thresholds varying from 0.7 to 0.95 with 
a step of 0.05 is computed and is reported in Table 3. The 
proposed model is compared with the SegNet model [21] as 
we use SegNet as the baseline method.

Table 3 shows the IoU scores obtained by different 
methods with various thresholds and the average IoU over 
all the thresholds from 0.7 to 0.95 with a step value of 0.05 
along with the loss of training is reported. We can observe 
that the IoU scores obtained by the proposed model are 
much superior compared to the scores obtained by the 
baseline model. The transpose convolution applied in the 
expansion path makes the segmentation better.

Effect of Post‑processing and Augmentation

As a post-processing step, we apply high-pass filters to 
the masks produced by the models. This experiments are 
performed to understand the effect of the post-processing.

The Input image along with the true mask and the pre-
dicted mask are plotted here for various images before 
and after the sharpening. The images in Fig. 8 show the 
effect of sharpening as a post-processing technique on the 
predicted masks.

From Fig. 8, we can observe that the proposed model 
with sharpening as a post-processing technique produces 
good improvement in the average IoU value in comparison 
with the other methodologies.

1(a) =

{
a ≥ �

0, otherwise

Comparison Study

This subsection compares the proposed method with the 
recent literature to demonstrate the effectiveness. Table 4 
presents the scores obtained by the proposed model in com-
parison with the scores obtained by recent models developed 
for salt segmentation tasks on TGS dataset.

From Table 4, it is clear that the proposed model outper-
forms various existing models in the literature. The model 
demonstrates superior performance over several existing 
models in terms of mean IoU scores.

Table 2   Comparison of the IoU scores produced by the proposed 
UNet architecture with SegNet

Parameters SegNet UNet (Proposed)
Loss 0.084 0.006

Threshold ( �)  0.70 78.10 85.64
 0.75 77.30 85.56
 0.80 76.35 85.46
 0.85 75.08 82.00
 0.90 73.24 85.21
 0.95 70.77 84.98

Average IoU 77.08 85.60

Table 3   Comparison of the IoU scores produced by the proposed 
UNet architecture with and without augmentation

Parameters No augmentation Augmentation
Loss 0.088 0.006

Threshold  0.70 84.80 85.64
 0.75 83.60 85.56
 0.80 82.17 85.46
 0.85 80.36 82.00
 0.90 77.70 85.21
 0.95 73.05 84.98

Average IoU 82.95 85.60

Fig. 8   Comparison of predicted masks with and without applying 
sharpening for post-processing
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Conclusion

In this work, we propose a machine learning model to 
segment salt deposit regions from the seismic images. 
A variation of the UNet architecture is proposed for the 
semantic segmentation. The proposed model is validated 
on the benchmark TGS dataset that is publicly available 
online. Our experimental results show that the proposed 
model outperforms the baseline. In addition we apply a 
high-pass filter on the output masks to make the masks 
more sharpened. Augmentation helps the model to gener-
alize well by avoiding over-fitting and allows the model to 
achieve an average IoU of 85.60.

These neural network models are typically designed 
with deeper layers and offer superior performance com-
pared to traditional approaches; however, they are data 
hungry and are not appropriate for low resource data 
scenarios.
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