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Abstract
The objective of this study is to investigate effects of the welding speed, wire feed speed, and torch angle on the weld

geometry, including height, width, and depth of metal deposition, in additive manufacturing of mild steel. In the present

study, artificial neural network was developed to predict weld bead geometry and validate the optimization of process

parameters to improve quality of weld bead geometry. Experimental results for the width, depth, and height of the weld

bead geometry were collected, and the interaction effect of the process parameters on the weld bead geometry was

investigated. Three-dimensional finite-element modelling was performed for the AM, and the width, depth, and height of

the weld geometry were predicted. The Taguchi method-based graph theory and matrix approach and the utility concept

were used to optimise the process parameters for achieving the dimensional accuracy in AM. The optimal working

condition was as follows: a torch angle of 60�, a wire feed speed of 6 m/min, and a welding speed of 0.4 m/min. Under the

optimal working conditions, the height, width, and depth of the weld bead were 3.910, 7.615, and 2.000 mm, respectively.

The optimization was also validated with ANN and a comparison among the ANN, simulation and experimental results

revealed good agreement.
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1 Introduction

Robotic gas metal arc welding (GMAW)-based additive

manufacturing (AM) is an emerging technology for the

fabrication of large and complex components. AM is

widely used to fabricate three-dimensional objects layer-

by-layer. The AM technique is completely different from

conventional manufacturing and reduces the amount of

material wasted, with a production efficiency of approxi-

mately 75%–85%. There are three types of wire arc AM

methods with different heat sources: GMAW, gas tungsten

arc welding, and plasma arc welding. Among them,

GMAW is often used when the objects are fabricated with

metal (Majeed et al. 2020). In most cases, GMA-based AM

is performed using articulated industrial robots, and the arc

path is guided by the robot. GMAW is in the category of

cold metal transfer, which reduces the processing heat

input at high frequencies (Azar 2015). This technique is

associated with high deposition rates, low cost, and good

structural integrity throughout the object. Various products,

including Ti-6Al-4 V spare parts, steel wind tunnels, and

aluminium wing ribs, are manufactured via this process

(Williams et al. 2016). The dimensional accuracy of the

wall geometry in terms of width, depth and height and

surface quality is still big challenge to manufactures to

obtain the parts with a tight tolerance range. To overcome

these difficulties, the weld bead is controlled by adjusting

the process parameters.

Manufacturing of parts is associated with shorter pro-

duct life cycle, on demand production and sustainability.

Among the conventional manufacturing methods, the AM

is an example of that kind. The AM technique is used to

directly fabricate thin-walled components. As AM is an

emerging technique, there are many issues and difficulties
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associated with this method. In AM, it was observed that

the weld bead geometry is not uniform at the starting and

ending of the weld bead. Hu et al. (2018) reported that

there is a backward flow of the metal in the weld pool as

the arc flow in the forward direction results in an abnormal

weld bead at the starting and ending, such as swelling at the

starting and reduction at the ending. They adjusted the

process parameters to control the weld bead throughout the

length and optimised the process parameters to obtain a

uniform bead at the starting ending of the bead. At high

wire feed rates, the molten pool became unstable because

of the impact of the arc force; additionally, this led to low-

quality fabrication. Li et al. (2019) studied the effect of the

gas metal arc torch angle on the weld pool stability and

developed a method for changing the torch angle. They

performed experiments at different torch angles ranging

from 45� to 135�. The pool stability was improved by

keeping the torch angle smaller than 90�.
As the AM system fabricates the products in layers, the

wall layer thickness and depth must be controlled to

achieve the required quality. Zhao et al. (2018) studied

effect of process parameters such as welding voltage, wire

feed speed, welding speed and standoff distance on weld

bead geometry in AM. They also optimized process

parameters using an adaptive grey wolf algorithm and

obtained required height, width and depth of weld bead.

Liu et al. (2019) developed a closed-loop quality control

system along with an online image acquisition system to

control process parameters. The proposed control system

analyzed images and adjusted the process parameters and

improved the quality of wall geometry. Jin et al. (2017)

optimized process planning to reduce metal consumption

during the AM. They developed a skeleton-based path

planning technique with narrow bead geometry and

improved metal deposition efficiency. Gokhale et al.

(2019) studied effect of torch angle, welding speed, wire

feed speed and current on wall width and height in AM and

optimized the process parameters to reduce wall thickness

and increase height of the wall. They concluded that width

of the wall increased as angle of the torch was increased

and at the same time, height of the wall was found to be

reduced. Zhao et al. (2011) studied the effect of the heat

source on the fabrication of a thin-walled component using

finite-element modelling (FEM). It was concluded that the

remelting of the single bead in each layer results in a large

molten pool and deep penetration.

GMAW is a complex process in AM that involves the

interaction of the arc plasma and the arc heat input, the

formation of a drop from the molten metal of the electrode,

and penetration on the substrate of the plate. As shown in

Fig. 1, the filler material is melted, and a weld pool is

formed on the plate substrate owing to the interaction of the

plasma arc and the arc heat input. The molten metal is

separated from the filler wire in the form of a droplet by an

electrostatic force and penetrates the substrate on the plate

(Wu et al. 2017). Modelling the AM process is an effective

way to simulate the wire arc AM for elucidating the pro-

cess and optimising the sequences of layer deposition

during the process. The numerical simulation facilitates the

optimisation of important process parameters, such as the

heat source power, path of metal deposition, and deposition

intervals (Oyama et al. 2019). Researchers have used dif-

ferent modelling techniques to simulate the AM process for

different metals. Oyama et al. (2019) performed numerical

simulations for AM of Al-5 Mg and Al-3Si alloys to

optimise the heat source used for the metal deposition and

validated the results experimentally. They proposed an

analytical method to estimate the heat input reduction

coefficient for experiments as well as simulations. Graf

et al. (2018) used FEM-based simulation to predict the

temperature, mechanical properties, wall geometry, and

distortion in AM. It was concluded that an uniform wall

geometry was obtained with a continuous welding path.

It is very difficult to understand and analyse the stability

of the weld pool, heat input, and fluid flow during the

welding process. Goldak et al. (1984) developed compu-

tational fluid dynamics models to investigate the weld pool

and fluid flow. Goldak’s double-ellipsoidal volume heat

source is proposed in modelling of GMAW. Hu et al.

(2018) used the Simufact Welding software for GMAW to

understand and overcome difficulties in AM.

Qi et al. (2019) stated that the FEM-based models are

physics-driven models and are not able to predict the wall

geometry quickly. Data-driven models like machine

learning (ML) techniques are widely used to overcome the

Fig. 1 Schematic of the weld pool and driving forces
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difficulties associated with the above-said models. The ML

techniques like artificial neural network (ANN) and deep

learning do not require any physics-based equations;

instead, a relationship between the input variables and

output targets is developed using the past experimental data

to predict the output targets quickly (2016). Baturynska and

Martinsen (Kucukoglu et al. 2018) made a comparison

between ML algorithms and linear regression models with

respect to prediction of wall geometry. They concluded

that the ML algorithms have outperformed in prediction of

height and length of wall. The ANN is one of the ML

techniques widely used in AM due to its strong computa-

tional power. Chowdhury et al. (2018) developed an ANN-

based geometric compensation methodology to predict

optimal part-built orientation in AM. They proposed two

stages: in the first stage, a weighted optimization technique

was used to optimize process parameters and then validated

with the ANN model in the second stage. Garland et al.

(2020) used the ML technique to predict dimensional

accuracy of 3D printed lattices and concluded that the ML

techniques are fast and inexpensive in prediction of wall

geometry in AM. It is summarized that the ML techniques

are able to predict the output targets easily with shorter

time.

In AM, it is necessary to fabricate thin-walled compo-

nents with the maximum height and minimum width and

depth of metal deposition. In addition, it is also required to

achieve less cost and shorter time of the process. To

achieve the required output characteristics, the process

parameters are optimised using different techniques, such

as the Taguchi method, response surface methodology,

grey relational analysis, and particle swarm optimisation.

Cheema et al. (2013) and Venkatarao (2019) reported that

the handling of the conventional optimisation techniques

becomes complex and confusing in multiresponse opti-

mization. As these optimisation techniques give equal

weights to all the output characteristics during multire-

sponse optimisation, it is impossible to optimise the pro-

cess parameters when the output characteristics have

different preferences (weights). To overcome these diffi-

culties, a new approach that combines the Taguchi method-

based graph theory and matrix approach (GTMA) and the

utility concept is used in different applications to optimise

the process parameters.

As AM is an emerging technology, there are many

difficulties related to process and quality control, and it is

difficult to understand the process. In the present study, the

torch angle was set as 60�, 90�, and 120� to examine the

weld bead geometry. The effects of the welding travel

speed, wire feed speed, and torch angle on the weld bead

geometry (e.g. the width, height, and depth of the weld

bead) were examined. Experiments were conducted with

different process parameters, and the width, height, and

depth of the weld bead were measured. An ANN-based

prediction model was developed to predict the width,

height, and depth of the weld bead. In addition to that, an

FEM-based numerical simulation was also performed to

predict the width, height, and depth of the weld bead. The

ANN and simulation results were compared with the

experimental results, and the effect of the weld pool on the

weld geometry was examined. Additionally, the Taguchi

method-based GTMA and the utility concept were used to

optimise the process parameters for achieving the maxi-

mum process performance and the optimization was con-

firmed by the ANN Technique.

2 FEM of AM

In the present study, the robot-assisted GMA-based AM

was modelled, and the results were simulated using the

SIMUFACT.WELDING software. This is one of the

commercial FEM software packages used to simulate

welding characteristics (Knowledge based design advisory

system for multi-material joining 2019). Figure 2 shows

the FEM of AM on a mild steel substrate with a mild steel

filler metal. During the FEM, one metal plate, one bearing,

four clamps, and one robot were selected as components

for the simulation. In the next step, mild steel is assigned to

the plate and filler metal. The steel plate with a size of

150 9 150 9 5 mm3 was taken as the substrate on the

bearing. The substrate was rigidly held on the bearing using

clamps, which were positioned at the four corners with a

distance of 20 mm from the edges. The metal deposition

trajectory and its length were defined on the substrate, as

shown in Fig. 2. The AM configuration was modelled with

45,282 elements, and the length, width and height of each

element were 0.6, 0.9 and 0.7 mm, respectively. Properties

of mild steel were selected from the software library. The

melting temperature and the room temperature were

assumed to be 1500 �C and 20 �C, respectively. The latent
heat during the solidification, Stefan–Boltzmann constant

emission coefficient and heat transfer coefficient were

256.4 J/g, 0.6, and 20 W/(m2 K), respectively. The welding

parameters, such as the current, voltage, welding effi-

ciency, welding traverse speed, wire feed speed, and gas

flow rate, were defined. In the present study, the current,

voltage, gas flow rate, and welding efficiency were 150 A,

20 V, 25 L/min, and 0.85, respectively, for the twenty-

seven experiments. The welding speed, wire feed speed,

and torch angles and their levels are presented in Table 2.

2.1 Heat-source modelling

During the simulation, the heat source is defined using

Goldak’s double-ellipsoid model to simulate the weld bead,
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as shown in Fig. 3 (Goldak et al. 1984). In the model, the

front length, rear length, width, and depth are defined as

(af), (ar), (b) and (d), respectively, for the simulation of the

metal deposition on the substrate. The heat distribution

during the simulation is described as follows:

qf x; y; zð Þ ¼ 6
ffiffiffi

3
p

ff Q

af bcp
ffiffiffi

p
p exp � 3x2

a2f
� 3y2

b2
� 3z2

c2

 !

; x� 0

ð1Þ

qr x; y; zð Þ ¼ 6
ffiffiffi

3
p

ff Q

af bcp
ffiffiffi

p
p exp � 3x2

a2r
� 3y2

b2
� 3z2

c2

� �

; x\0

ð2Þ
ff þ fr ¼ 2;Q ¼ gVI; ð3Þ

where qf and qr represent the heat fluxes at the front and

rear semi-ellipsoids, respectively, g represents the

efficiency, V represents the voltage, Q represents the heat

deposited, ff represents the fraction of heat deposited in the

front region, and fr represents the fraction of heat deposited

in the rear region, which were recommended by Goldak as

0.6 and 1.6, respectively. Based on the arc length, torch

angle, heat transfer characteristics of the arc, size of weld

pool and the shielding gas (a gas mixture of 95% argon and

5% CO2), the heat source parameters are summarised (Azar

2015; Goldak et al. 1984) as presented in Table 1.

After the double-ellipsoidal heat-source parameters

were defined, the simulation was performed. Figure 4

shows the simulation of the AM on the substrate. After the

simulation, the width, height, and depth of the metal

deposition were measured, as shown in Table 2.

3 Experiments

Figure 5 shows the experimental setup for the robotic AM

system using GMAW. In the present study, mild steel as

used as the substrate as well as the wire for AM, and 27

experiments were conducted at three levels torch angles

(TA), wire feed speeds (WFS), and welding speeds (WS).

The mild steel substrate was fixed on a table at a suit-

able position, and the welding torch was fixed to the end of

Fig. 2 FEM of AM

Fig. 3 Double-ellipsoidal heat-source pararmeters

Table 1 Double-ellipsoidal heat-source parameters

Exp. No.s af ar b d

1–9 2.23 7.00 2.25 3.30

10–18 1.96 7.20 2.77 3.77

19–27 1.85 7.65 2.25 3.30
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the robot arm. The torch was provided with a 1.2-mm-

diameter mild steel electrode and a supply of inert gas.

While the electrode was deposited on the substrate, the

inert gas acted as a shielding gas, protecting the metal

deposition from the atmosphere.

The experiments were conducted at a current of 150 A.

During the experiments, a gas mixture of 95% argon and

5% CO2 was used as the shielding gas, with a gas flux of 25

L/min. As shown in Fig. 6, the metal was deposited on the

substrate, while the torch was kept inclined at 60�, 90�, and
120�. As per design of experiments, twenty-seven experi-

ments were conducted, with three different torch angles,

wire feed speeds, and welding travel speeds, respectively,

as shown in Fig. 7.

After the experiments, the substrate was removed and

sectioned across the weld beads using a wire cut electric

discharge machining process. As shown in Fig. 8, the size

of the weld bead or the size of the metal deposition, such as

the width of the weld bead (WWB), the height of the weld

bead (HWB), and the penetration/depth of the weld bead

(DWB), was measured using a microscope for the experi-

ment 1. It was observed that the simulated weld geometry

was found to be same as the experimental weld geometry.

The measured values of the HWB, WWB and DWB for the

twenty-seven experiments are presented in Table 2.

4 Results and discussion

In the present study, the effects of the welding travel speed,

wire feed speed, and torch angle on the weld bead geom-

etry (e.g. HWB, WWB and DWB) were examined. FEM-

based simulations were performed for twenty-seven

experiments, and the weld bead geometry was compared

with experimental results. The simulated results for the

widths of the weld bead and heat-affected zone (HAZ) for

the first experiment, which was performed with a torch

angle of 60�, a wire feed speed of 5 m/min, and a welding

speed of 0.2 m/min, are shown in Figs. 9a and b, respec-

tively. At approximately 1600 �C, heat accumulated in the

weld pool, which melted the substrate, and the molten

electrode metal formed the weld bead. The region around

the weld pool (called the HAZ) was also affected by the

heat, having a temperature as high as 1000 �C. The

experimental and simulation results for the HWB, WWB

and DWB were compared. The error between the experi-

mental and simulation results was\ 5%.

4.1 Width of weld bead (WWB)

The WWB is one of the output characteristics that influ-

ences the dimensional accuracy of AM. The interaction

effect of the process parameters on the WWB bead is

shown in Fig. 10. From Fig. 10a, as the size of the weld

pool was directly proportional to the size of the weld bead,

the weld-bead size increased when the wire feed speed and

torch angle increased from 5 to 7 m/min and from 60� to

120�, respectively. As shown in Fig. 10b, as the size of the

weld pool decreased when the welding speed increased, the

WWB decreased when the welding speed increased from

0.2 to 0.4 m/min. As shown in Fig. 10c, the WWB

increased when the wire feed speed increased from 5 to

7 m/min and decreased, while the welding speed increased

from the 0.2 to 0.4 m/min.

The effect of the torch angle on the size of the weld bead

is shown in Fig. 11. Figure 11 a and b presents schematics

Fig. 4 Simulation of AM
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of metal deposition with torch angles of 60� and 90�,
respectively. When the torch angle is 60�, the arc force is

applied to the weld pool in the welding direction. As shown

in Fig. 11a, the electrode molten metal was forced into the

weld pool in the direction of welding, which results in

reduced WWB. In addition, when the wire feed speed

increased at low values of welding speed, excess electrode

molten metal causes increased WWB. When the torch

angle was kept at 120�, the arc force was applied to the

weld pool in the direction opposite to the welding direc-

tion. As shown in Fig. 11b, the electrode molten metal was

pushed over the weld bead, which results in increased

WWB (Hu et al. 2018). Nitish et al. (Gokhale et al. 2019)

also found increased thickness and reduced height of weld

bead as the angle of torch was increased.

4.2 Height of weld bead (HWB)

The HWB determines the number of welding passes nee-

ded to build an object in AM. The interaction effect of the

process parameters on HWB is presented in Fig. 12. As

shown in Fig. 12a, the HWB increased as the wire feed

speed increased from 5 to 7 m/min, but the HWB

decreased as the torch angle increased from 60� to 120�. As
shown in Fig. 12a, as the WWB increased as the torch

angle increased, which reduced the HWB. As shown in

Fig. 12 a and b, the HWB decreased when the welding

speed increased from 0.2 to 0.4 m/min. As shown in

Fig. 12c, the HWB decreased when the welding speed

increased from 0.2 to 0.4 m/min at low wire feed speed

(5 m/min), but the HWB increased when the wire feed

speed increased from 5 to 7 m/min. At high welding

speeds, the low consumption rate of the electrode metal

Table 2 Design of experiments and experimental results

Exp.No Design of experiments Weld bead geometry (mm)

TA (�) WFS (m/min) WS (m/min) Exp. HWB Sim. HWB Exp. WWB Sim. WWB Exp. DWB Sim. DWB

1 60 5 0.2 4.49 4.62 8.74 7.95 1.91 1.81

2 60 5 0.3 3.02 3.20 7.60 7.71 1.81 1.98

3 60 5 0.4 2.63 2.51 7.61 7.89 1.80 1.81

4 60 6 0.2 4.68 4.47 8.27 8.02 2.11 2.20

5 60 6 0.3 3.80 3.70 8.68 8.33 2.05 2.16

6 60 6 0.4 2.72 2.80 7.80 7.80 1.96 1.84

7 60 7 0.2 4.68 4.81 8.08 8.22 2.11 2.09

8 60 7 0.3 4.33 4.41 7.79 7.83 2.01 2.16

9 60 7 0.4 3.48 3.95 7.78 7.02 2.08 2.22

10 90 5 0.2 4.08 3.97 10.37 9.92 2.24 2.38

11 90 5 0.3 3.32 2.92 8.37 8.58 2.16 2.21

12 90 5 0.4 2.64 2.55 7.91 8.20 2.04 1.98

13 90 6 0.2 4.63 4.80 10.31 10.16 2.38 2.49

14 90 6 0.3 4.13 4.00 8.45 8.61 2.30 2.43

15 90 6 0.4 2.89 2.97 8.05 7.93 2.24 2.27

16 90 7 0.2 4.86 4.51 9.98 10.15 2.48 2.46

17 90 7 0.3 4.66 4.67 8.15 8.24 2.35 2.31

18 90 7 0.4 4.04 3.85 7.92 7.73 2.21 2.27

19 120 5 0.2 3.94 4.02 10.44 10.04 1.13 1.20

20 120 5 0.3 2.63 2.51 9.63 10.11 1.49 1.38

21 120 5 0.4 2.62 2.58 8.10 8.46 1.83 2.02

22 120 6 0.2 4.40 4.41 10.45 9.88 1.12 1.42

23 120 6 0.3 3.02 3.25 9.89 9.92 1.58 1.50

24 120 6 0.4 2.88 8.17 8.36 1.90 2.00 2.05

25 120 7 0.2 4.67 4.51 10.43 10.67 1.98 1.84

26 120 7 0.3 3.50 3.67 9.70 9.04 1.65 1.59

27 120 7 0.4 3.49 3.48 8.25 8.58 1.22 1.38
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reduced the HWB. But, excess molten metal of wire

increased the HWB when the wire feed speed increased.

4.3 Depth of weld bead (DWB)

The DWB is an important output characteristic that indi-

rectly affects the width and height of the weld bead. Higher

values of the weld depth result in lower values of the

HWB. As shown in Fig. 13, the torch angle and welding

speed had mixed effects on the depth of the weld pool. As

shown in Fig. 13a, the DWB increased as the torch angle

increased from 60� to 90�and then decreased as the torch

angle increased from 90� to 120�. As shown in Fig. 11, at

torch angles of 60� and 120�, the arc forces were applied in

the inclined direction at the weld pool, which resulted in an

overflow of molten metal and a reduced DWB. Addition-

ally, the DWB increased as the wire feed speed increased

from 5 to 7 m/min at the three torch angles. As shown in

Fig. 13 b and c, the DWB increased as the welding speed

increased from 0.2 to 0.3 m/min and then decreased as the

welding speed increased from 0.3 to 0.4 m/min. At low

welding speeds, the consumption of the electrode metal

was low, reducing the depth. At high welding speeds,

insufficient wire was fed, reducing the DWB.

5 ANN algorithm

ANN is one of the ML techniques working with supervised

learning. In supervised learning ANNs, a multi-layer per-

ceptron (MLP) model is trained with feed-forward back-

propagation algorithms. The MLP networks are the data-

driven techniques capable of modelling complex tasks,

where as the physics-driven modelling and mathematical

modelling are difficult (Kucukoglu et al. 2018). As the

ANN has strong modelling and prediction skills, they are

suitable to evaluate accuracy of wall geometry in AM (Qi

et al. 2019). During the supervised learning, the network

was given a set of data which includes inputs and their

corresponding output targets. The neurons in each layer

propagate the given information until the given information

Fig. 5 Experimental setup for AM

Fig. 6 Torch angles of 60�, 90�,
and 120�during the metal

deposition
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reached the neurons in the output layer. Magnitude of each

neuron in the output layer was estimated using Eq. (4)

(Venkata Rao and Murthy 2018; Mehrotra et al. 1997).

y ¼ f
X

i

wixi

 !

¼ f w:xð Þ ¼ f wTx
� �

ð4Þ

where the x represents input, and the w represents

weight or efficiency of the connection. The network also

calculated error between the estimated output value and the

output targets. If the error was found beyond the target

error, the backpropagation algorithm changed weights of

the connections between the layers until the error was

found less than the target error (Almeida et al. 2020).

In the present study, a feed-forward MLP network was

used to model the weld/wall geometry. As shown in

Fig. 14, the 3-9-3 MLP consists of three layers such as

input layer, hidden layer and output layer. There are con-

nections between the layers to transform the information

between the layers. The input layer consists of three neu-

rons or nodes such as torch angle, wire feed speed and

welding speed, and the output layer consists of three neu-

rons such as HWB, WWB and DWB. The hidden layer

Fig. 7 Metal deposition under

different working conditions

Fig. 8 Geometry of the weld bead for experiment 1

Fig. 9 Widths of weld bead, and

HAZ for experiment 1
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consists of nine neurons. Number of hidden layers and

number of neurons in the hidden layer were estimated by

trial and error method (Venkata Rao and Murthy 2018)

based on target error. In the present study, target error was

set to 0.01 during the training.

As shown in Fig. 15, the network was training with

feed-forward backpropagation algorithm using EasyNN-

plus software. The network was trained with the 20 sam-

ples consisting of different working conditions performed

at different levels of torch angle, wire feed speed and

welding speed and the corresponding height, width and

depth of weld bead as presented in Table 2. During the

training, the target error was set to 0.01, and the learning

rate and momentum were set to 0.6 and 0.8, respectively.

The network was stopped when the average training error

reached to a value which is less than the target error. Since

the sample size is less for training of the network, number

of hidden layers and number of nodes in hidden layers were

estimated by trial and error method based on the testing

error. The number of hidden layers and neurons in the

hidden layer were changed until the average training was

found less than 0.01. In the present study, average training

error (0.00002) of the 3-9-3 network was found less the

target error (0.01). That is why, this network was used in

the present study for modelling of the weld bead geometry.

Weight of the connections between the input layer and

hidden layer was selected as 21, and the weight of the

connections between the hidden layer and output layer was

Fig. 10 Interaction effect of the

process parameters on the width

of the weld bead

Fig. 11 Metal deposition at

torch angles of 60�and 120�

Fig. 12 Interaction effect of the

process parameters on the

height of the weld bead

Fig. 13 Interaction effect of the

process parameters on the depth

of the weld bead
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selected as 42 randomly by the software itself (Almeida

et al. 2020). After training, the network was tested with

experimental results as presented in Table 3.

Experimental values, ANN predicted values and

numerical simulation results of the weld/wall geometry are

presented in Table 3. The ANN predicted values and

numerical simulation results were compared with the

Fig. 14 A multi-layered 3-9-3

perceptron

Fig. 15 Learning graph with training and validation error

Table 3 Experimental, ANN

and simulation results of weld

bead geometry

Exp.No HWB (mm) WWB (mm) DWB (mm)

Exp ANN Sim Exp ANN Sim Exp ANN Sim

2 3.02 3.00 3.20 7.60 7.80 7.71 1.81 1.90 1.98

16 4.86 4.70 4.51 9.98 9.87 10.15 2.48 2.47 2.46

24 2.75 2.70 2.88 8.17 8.07 8.36 2.00 1.98 2.05
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experimental results, and average error was also computed

for HWB, WWB and DWB. The ANN predicted values

have average errors as 1.97%, 1.64% and 3.24% for HWB,

WWB and DWB, respectively, with the experimental

results. At the same time, the ANN predicted values have

average errors as 5.96%, 1.82% and 6.93% for HWB,

WWB and DWB, respectively. It was observed that the

data-driven-based ML technique predicted the responses

very close to the experimental results than the physics-

driven modelling technique.

6 Optimisation of process parameters

The Taguchi-based GTMA and the utility concept were

used to optimise the process parameters for improving the

dimensional accuracy of AM. The height, width, and depth

of the weld bead were taken as performance characteristics

to optimise the process parameters for achieving maximum

performance in AM. The GTMA was used to estimate the

weights for the height, width, and depth of the weld bead,

and the Taguchi method was used to obtain the preference

scales for the three output characteristics. The utility con-

cept was employed to estimate the overall utility of the

three output characteristics using their weights and pref-

erence scales, as follows:

U ¼ PHWBWHWB þ PWWBWWWB þ PDWBWDWB ð5Þ

where U represents the overall utility value, and PHWB,

PWWB, and PDWB represent the preference scales for the

height, width, and depth of the weld bead, respectively.

The WHWB, WWWB, and WDWB represent the weights of the

height, width, and depth of the weld bead, respectively.

Various steps involved in estimation of weights for the

height, width and depth of weld bead were described

below.

6.1 Preference graphs (PG)

Figure 16 shows the preferences given to the output char-

acteristics by different users according to their requirement.

User 1 gave high priority to the height of the weld bead,

followed by the width and depth. User 2 gave equally high

priority to the width and height, followed by the depth.

User 3 gave high priority to the height, followed by equal

priority to the width and depth. User 4 gave high priority to

the width, followed by the height and depth. Based on the

preferences, the preference matrices were constructed as

follows:

PG1 ¼

HWB WWB DWB

0 1 0

0 0 1

0 0 0

2

6

6

6

4

3

7

7

7

5

HWB

WWB

DWB

PG2 ¼
0 0 1

0 0 1

0 0 0

2

6

4

3

7

5

PG3 ¼
0 1 1

0 0 0

0 0 0

2

6

4

3

7

5

PG4 ¼
0 0 1

1 0 0

0 0 0

2

6

4

3

7

5

6.2 Dominance matrix

Dominance matrices (Dn) for the three preference graphs

were estimated as follows (K. Venkata rao 2019):

Dn ¼ ðPGnÞ1 þ ðPGnÞ2 þ :::. . .. . .::þ PGnð Þm�1 ð6Þ

where n is the number of users, and m is the number of

weld bead parameters

D1
=

0 1 1

0 0 1

0 0 0

2

4

3

5 D2
=

0 0 1

0 0 1

0 0 0

2

4

3

5 D3
=

0 1 1

0 0 0

0 0 0

2

4

3

5

Fig. 16 Preference graph with

different users’ preferences of

output characteristics
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D4
=

0 0 1

1 0 1

0 0 0

2

4

3

5.

6.3 Relative degree of performance

The relative degree of performance (RDP) among the three

weld bead parameters was estimated using Eq. (7) (Ven-

kata rao 2019).

rdpnm ¼ 1þ dnm
Maxm¼1...:M1þ dnm

ð7Þ

6.4 Relative importance rating

The relative importance rating (RIR) was estimated using

Eq. (8) (Venkata rao 2019).

RIRm ¼
PN

n¼1 rdp
n
m

Maxm¼1...:M

PN
n¼1 rdp

n
m

ð8Þ

6.5 Weight

Weights (W) of the three weld bead parameters were

estimated using Eq. (9) (Venkata rao 2019; Babu et al.

2017).

Wm ¼ rirm
PM

m¼1 rirm
ð9Þ

Wm = (0.449, 0.367, 0.184)

Weights for the height, width and depth of weld bead

were estimated as 0.449, 0.367 and 0.184, respectively.

In the next step, preference scales for the height, width,

and depth of the weld bead were estimated. The process

parameters were optimised using the Taguchi method for

the three output characteristics separately. As the present

study was aimed maximize HWB and minimise WWB and

DWB, ‘‘larger is best’’ was used to estimate the signal-to-

noise ratio for HWB, and ‘‘smaller is best’’ was used to

estimate the signal-to-noise ratio for the WWB and DWB,

via Eqs. (10) and (11) (Rao et al. 2016). The term signal

represents desired value, and the noise represents undesired

value. The optimal values of the output characteristics were

predicted using the Taguchi method and are presented in

Table 4. From Table 2, the maximum acceptable levels of

HWB, WWB and DWB were selected, as shown in

Table 4.

‘‘Smaller is best’’

S

N
¼ �10 log

1

n

� �

X

y2
� �

� �

ð10Þ

‘‘Larger is best’’

S

N
¼ �10 log

1

n

� �

X 1

y2

� �� �

ð11Þ

Here, y represents the observed data, and n represents

the number of samples.

6.6 Preference-scale construction

Preference scales for the three output characteristics are

obtained using Eq. (12). The value of P can be selected

from 0 to 9 (Kansal et al. 2006). In the present study, P was

set as 9.

P ¼ Alog
Y 0

Y
0
i

ð12Þ

Here, Yi represents the predicted value of the output

characteristic,Y
0
i represents the maximum acceptable level

of the output characteristics, and A is a constant. The value

of A is estimated using optimal and acceptable levels of the

output characteristics.

Preference scale for the height of the weld bead:

PHWB ¼ �3:35log
YHWB

4:699
ð13Þ

Preference scale for the width of the weld bead:

PWWB ¼ �95:4log
YWWB

7:776
ð14Þ

Preference scale for the depth of the weld bead:

PDWB ¼ 116log
YDWB

1:121
ð15Þ

The weights and preference scales of the three output

characteristics were substituted into Eq. (5) to calculate the

combined utility value, as follows:

U n; Yð Þ ¼ �3:35log
YHWB

4:699
0:449� 95:4log

YWWB

7:776
0:367

þ 116log
YDWB:

1:121
0:184

The utility values are calculated and presented in

Table 5.

The process parameters were optimised to maximise the

overall performance of AM using the response surface

methodology. The process parameters were optimized to

maximise overall quality of the weld bead, i.e. maximiza-

tion of HWB and minimization of WWB and DWB. Dur-

ing the optimization, desirability function of the

optimization was calculated using a gradient algorithm.

The desirability function was estimated between 0 and 1.

Desirability function with value of 1 indicates that the

optimization is accepted (Venkata Rao and Murthy 2018).

In the present study, the optimization was performed using

MINITAB 17, and desirability function was estimated at 1
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as shown in Fig. 17. The optimal working conditions were

as follows: a torch angle of 67.4� (rounded to 68�), a wire

feed speed of 6.8 m/min, and a welding speed of 0.35 m/

min. Gokhale et al. (2019) also found that torch angles

of\ 90�result in better weld quality.

7 Validation of optimization

Using the optimal working conditions (torch angle of 68�,
wire feed speed of 6.8 m/min, and welding speed of

0.35 m/min), the HWB, WWB and DWB were predicted

using the ANN and numerical simulation methods. An

experiment was also performed using the optimal working

condition, where in the HWB, WWB and DWB were

measured. Experimental results were compared with the

ANN predicted values and numerical simulation results,

and error was also estimated. The error for ANN predicted

values was found to be 1.78%, 1.45% and 3.55% for HWB,

WWB and DWB, respectively, and the error for the sim-

ulation results was estimated as 5.7%, 1.8% and 6.85% for

HWB, WWB and DWB, respectively. The results of the

three methods exhibited good agreement, as shown in

Table 6. But, the ANN predicted the weld bead geometry

very close to experimental values. Thus, the optimisation

and the accuracy of ANN were validated experimentally.

8 Conclusions

The objective of the present study was to develop a data-

driven model using machine learning technique and opti-

mize the weld bead geometry in robotic GMAW-based

AM. The torch angle was set as 60�, 90�, and 120� during
experiments to examine the width, depth, and height of the

weld geometry. A three-dimensional FEM was performed

to examine the HWB, WWB and DWB, and width of the

HAZ. In addition, ANN modelling was also performed to

predict and optimize the HWB, WWB and DWB. The

process parameters were optimised using the Taguchi

method-based GTMA and the utility concept to improve

dimensional accuracy of parts in AM. The main conclu-

sions are drawn as follows:

• At 1600 �C, heat accumulated in the weld pool and

melted the substrate, and molten electrode metal formed

a weld bead. The HAZ around the weld pool was also

affected by the heat up to 1000 �C.

Table 4 Predicted optimal and acceptable levels of output characteristics

S.

No

Output

characteristics

Optimal process parameters Predicted optimal

values

Acceptable level

Torch angle

(�)
Wire feed speed (m/

min)

Welding speed (m/

min)

1 HWB (mm) 60 7 0.2 4.67 4.70

2 WWB(mm) 60 5 0.4 7.08 7.78

3 DWB (mm) 120 6 0.2 1.21 1.12

Table 5 Combined utility values of three output characteristics

Exp. No TA (�) WFS (m/min) WS (m/min) Utility value

1 60 5 0.2 6.29

2 60 5 0.3 9.43

3 60 5 0.4 11.95

4 60 6 0.2 6.46

5 60 6 0.3 11.31

6 60 6 0.4 15.18

7 60 7 0.2 7.39

8 60 7 0.3 15.47

9 60 7 0.4 15.61

10 90 5 0.2 7.94

11 90 5 0.3 11.69

12 90 5 0.4 7.63

13 90 6 0.2 6.58

14 90 6 0.3 10.70

15 90 6 0.4 11.90

16 90 7 0.2 7.63

17 90 7 0.3 14.84

18 90 7 0.4 15.55

19 120 5 0.2 13.20

20 120 5 0.3 15.45

21 120 5 0.4 9.57

22 120 6 0.2 10.37

23 120 6 0.3 15.27

24 120 6 0.4 8.60

25 120 7 0.2 14.54

26 120 7 0.3 7.73

27 120 7 0.4 11.92
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• The WWB increased as the wire feed speed and torch

angle increased from 5 to 7 m/min and from 60� to

120�, respectively. As the wire feed speed increased,

the consumption rate of the metal electrode increased,

resulting in a larger WWB.

• When the torch angle was 60�, the arc force was applied
into the weld pool in the welding direction. The

electrode molten metal was pushed in to the weld pool

by the arc force, which results in reduced WWB. At a

torch angle of 120�, the arc force was applied to the

weld pool in the direction opposite to the welding

direction. The electrode molten metal was pushed over

the weld bead by the arc force, which results in

increased WWB.

• The HWB, WWB and DWB were predicted with ANN

and numerical simulation. The ANN predicted the

HWB, WWB and DWB with average errors of 1.97%,

1.64% and 3.24%, respectively. While the numerical

simulation predicted the HWB, WWB and DWB with

average errors of 5.96%, 1.82% and 6.93% for HWB,

WWB and DWB, respectively. It was observed that the

data-driven-based ML technique predicted the

responses very closely with experimental results than

the physics-driven modelling technique.

• The dimensional accuracy of the AM process was

maximised using the proposed optimisation technique

with the optimal working conditions: a torch angle of

68�, a wire feed speed of 6.8 m/min, and a welding

speed of 0.3.5 m/min. Under the optimal working

conditions, the height, width, and depth of the metal

deposition were 3.910, 7.682, and 2.000 mm, respec-

tively. The ANN and simulation results agreed well

with the experimental results of optimum process

parameters.

It was summarised that the FEM-based simulation is

associated with many steps and consumes considerable

amount of time in prediction of output targets. But, the

ANN-based technique is able to predict the output targets

in shorter time with less steps and helps to improve

dimensional accuracy of parts fabricated by the AM.
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