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Numerical and experimental nonlinear
dynamic response reduction of smart
composite curved structure using
collocation and non-collocation
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Abstract

In this work, a generic geometrical nonlinear mathematical model of smart composite curved shell panels has been

developed for the evaluation of the linear and nonlinear dynamic responses. Further, the dynamic deflections are reduced

by employing the piezoelectric material with the parent composite using two different arrangements (sensor and actu-

ator). The current layered structure model is developed based on the higher-order mid-plane kinematics including the

stretching effect. The electric potential due to the piezoelectric material included via a quadratic function of thickness for

the current combined electro-elastic modeling. The geometrical distortion of the smart shell panel structure accounted

via Green-Lagrange strain field including all of the nonlinear higher-order terms. The desired responses are evaluated

computationally using an original computer code (MATLAB environment) with the help of the current higher-order

model and finite element steps. The nonlinear dynamic deflection values are obtained through the direct iterative method

in conjunction with Newmark’s integration. Additionally, the accuracy of the proposed model is demonstrated via

comparison study with the available published literature with and without electric field potential. The reduction of

response frequencies is also compared with the in-house experimental data. Lastly, few more numerical examples are

computed for the various geometrical parameter including the shell configuration and the comprehensive behaviour of

the currently developed nonlinear numerical model for the analysis of smart layered structure discussed in details.
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Introduction

Since last few decades, the multi-layered composite
material has been popular and extensively used in
various weight-sensitive industries due to light-
weight and flexible properties.1–3 Similarly, the piezo-
electric material, due to its electromechanical coupling
behaviour is preferably used in sensing and actuating
applications. By combining the traditional advantages
of the layered composite material with that of the
inherent capability (electromechanical coupling
behaviour) of piezoelectric material, a hybrid smart
composite is developed. Nowadays, the hybrid com-
posite of layered structure embedded with piezoelec-
tric layer or patches, gaining huge attention for
potential application in structural health monitoring,
shape control and precision positioning, automotive

sensing and actuating configuration, vibration
and noise suppression in aircraft, aerospace, ship
building and similar industries. This is due to their
outstanding properties such as flexibility, light-weight,
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self-controlling and/or self-monitoring capabilities,
wide bandwidth and quick response ability, availabil-
ity in thin form etc.4–6 To attain superior design and
manufacturing of these structures for the safe appli-
cation in various areas, it is highly important for the
design engineers to envisage the mechanical behaviour
accurately prior to the final design. In order to do so
various analytical, semi-analytical, numerical and
exact solutions for the smart layered composite struc-
ture have been provided in the past by many research-
ers. Few pioneer, related and important works
available in the open literature have been reviewed
and presented in the following lines.

The piezoelectric laminate theory is proposed by
Lee7 that is capable of replicating the influence of
the actuating (electromechanical) and sensing
(mechanoelectrical) behaviour of the laminate. Pai
et al.8 developed the refined nonlinear model for the
laminate structure embedded with piezoelectric mater-
ial based on the higher order shear deformation
theory (HSDT) and layerwise theory. Mitchell and
Reddy9 introduced a refined hybrid theory for lami-
nated composite with the piezoelectric layer such that
the mechanical displacement field and the potential
function for piezoelectric laminate are based on the
equivalent single layer theory and layerwise theory,
respectively.

The finite element method (FEM) is known to be
a robust tool for solving more complex engineering
problems. Dynamic behaviour of laminated compos-
ite embedded with lead zirconate titanate (PZT)
patches is analysed by Lee and Ng10 and Sunar
and Al-Bedoor11 using FEM. The linear and non-
linear dynamic characteristic of laminated composite
structure with surface bonded smart material is
investigated using the linear and nonlinear FE
models based on the first order shear deformation
theory (FSDT)12 and the HSDT13 in conjunction
with layerwise and/or single layer theory approxima-
tion. Mateescu et al.14 investigated the dynamic char-
acteristic of smart damaged structure subjected to
aerodynamic loading. In the similar line, the geomet-
rical nonlinear time-dependent mechanical responses
of the doubly curved sandwich shell panel embedded
with the piezoelectric layer are analysed by Kumar
and Ray15 using nonlinear 3D FE model in conjunc-
tion with the FSDT and von Karman nonlinear
strain.

Analytical solutions for the nonlinear dynamic
response of layered composite plate with piezoelectric
material subjected to combined thermo-electro-
mechanical loading is presented by Huang and
Shen16 by considering the geometrical nonlinearity
in von Karman sense. Similarly, the free and forced
vibration responses of the smart layered composite
with an acoustic enclosure is provided by
Shahraeeni et al.17 using the classical lamination
theory (CLT). Jiang et al.18 also developed an analyt-
ical solution approach by using refined plate theory to

analyse the dynamic responses of the piezoelectric
laminated plate. Phung-Van et al.19 obtained the
static and dynamic responses of the smart laminated
composite structure by developing the mathematical
model in the framework of the HSDT using isogeo-
metric analysis (IGA) method. Later, they (Phung-
Van et al.20) extended the analysis of nonlinear tran-
sient responses by developing the nonlinear model
using the generalized unconstrained approach in con-
junction with IGA and von-Karman type of geomet-
rical nonlinearity. Subsequent development of the
mathematical modeling further extended to analyse
the plate/shell structures using Carrera Unified
Formulation (CUF) with and without considering
the effect of the smart materials. In this regard, a sig-
nificant amount of studies reported21–25 to handle a
large variety of plate/shell models in a unified manner.
The studies indicate that CUF theory has a major
advantage that it can have an order of expansion
which goes from first to higher-order values, and,
can be regarded as an equivalent single layer or
layer-wise depending on the thickness functions
adopted.

Further, the exact solutions of the static deflections
of the functionally graded (FG) structure embedded
with piezoelectric fiber reinforced composite (PFRC)
material are reported by Ray and Sachade.26

Similarly, the transient behaviour of the layered
smart composite structure investigated by Qing
et al.27 via modified mixed variational principle
using the propagator matrices method. The flexural
vibration of layered cylindrical shell panel with
PFRC actuators is analysed by Shen and Yang28

using HSDT mid-plane kinematics and the geomet-
rical nonlinearity in von Karman sense. Saviz29 pre-
sented the elasticity solution to the dynamic response
of cylindrical shell with surface bonded piezoelectric
layer by incorporating both the displacement and
electric potential field via Legendre polynomial
expansion.

From the extensive review, it is noted that various
nonlinear mathematical model proposed including the
new solution technique to compute the mechanical
responses of the smart layered composite structure
in the past. However, in most of the studies, we
note that von-Karman type of strain–displacement
relations utilised for the geometrical nonlinear model-
ing purpose. It is well known that the geometrical
nonlinearity in von-Karman sense does not include
all of the nonlinear terms associated with the struc-
tural deformation and comprised with the moderate
rotations only. For the incorporation of large rotation
and distortion, it does not meet the realistic case.
Whereas, the nonlinear strain field in Green-
Lagrange form is not only accurate but also represent
the general configuration of any deformed structure.
Also, noted that the limited numbers of the article
reported on the nonlinear transient behaviour of the
doubly curved laminated shell panel embedded with
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the piezoelectric material including the experimental
validation for the reduction of the response frequency.
Therefore, the aim of the present investigation is to
develop a generalised nonlinear FE model of the
layered composite doubly curved shallow shell panel
based on the HSDT mid-plane kinematics and Green-
Lagrange nonlinear strain field. Subsequently, devel-
opment of a customised computer code using the cur-
rent higher-order nonlinear FE model including the
direct iterative method and Newmark’s time integra-
tion scheme. Further, the validity including the sup-
pression of dynamic response frequency of the current
higher-order nonlinear model has been established by
comparing with the in-house experimental results.
Finally, analysis has been extended to investigate the
effect of different design parameters on the nonlinear
time-dependent deflection responses of the smart
laminated structure and the inferences provided in
details.

Mathematical formulation

A generalized geometrically nonlinear mathematical
model of the smart composite curved shell panel is
developed. In this regard, the detailed FE electro-
mechanical formulation is discussed in the following
subsections.

Doubly curved shell element

Figure 1 shows the schematic diagram of a doubly
curved shell panel of substrate thickness ‘h’ with
piezoelectric layers of thickness ‘hp’ constructed on a
rectangular base of sides ‘a’ and ‘b’ considered for the
present study. Rx and Ry are the principal radii of

curvature of the shell panel along x and y-directions,
respectively.

Kinematic model

In the present analysis, both the field variables within
a shell element, i.e. the mechanical displacement (u, v,
w) and the electric potential (�k) have been taken as
the function of thickness-coordinate (z). In order to
achieve generality, the displacement field along x and
y-direction are considered to be third order polyno-
mial and the variation of the displacement through
the thickness is taken as the linear function of thick-
ness coordinate at the mid-plane of shell element (i.e.
z¼ 0). The final form of the displacement field is con-
ceded as in Singh and Panda30

u x, y, z, tð Þ ¼ u0 x, yð Þ þ z�x x, yð Þ þ z2 x x, yð Þ

þ z3lx x, yð Þ

v x, y, z, tð Þ ¼ v0 x, yð Þ þ z�y x, yð Þ þ z2 y x, yð Þ

þ z3ly x, yð Þ

w x, y, z, tð Þ ¼ w0 x, yð Þ þ z�z x, yð Þ

ð1Þ

Similarly, the electric potential variation within the
panel is considered as the second order polynomial
with three electrical degrees of freedom as in
Benjeddou et al.31

�k x, y, zð Þ ¼ �k0 x, yð Þ þ z�k1 x, yð Þ þ z2�k2 x, yð Þ ð2Þ

where (u0, v0, w0) denote the mid-plane displacements
along x, y and z coordinates, respectively. �x and �yare
the shear rotations about the y and x-axes, respect-
ively and other functions  x,  y, lx, ly

� �
are the

higher-order terms defined in the mid-plane of the
curved panel. ‘�z‘ is the normal extension along
z-axis also known as the ‘thickness-stretching term’.
The details of individual mechanical degrees of free-
dom functions at the mid-plane (z¼ 0) can be seen in
Singh et al.32

The three electrical degrees of freedom �k0,�
k
1,�

k
2

� �
in any kth piezoelectric layer are defined as follows

�k0 ¼
�kþþ�

k
�

2
, �k1 ¼

�k���
k
þ

hp
, �k2 ¼

�k0þ�
k
1

2
ð3Þ

where �kþand �
k
� are the electric potential at the top

and bottom surfaces of a kth piezoelectric layer and
‘hP’ are the thickness of the piezoelectric layer. It is
assumed that the inner electrode is grounded (i.e.
�k� ¼ 0) whereas the outer electrode is applied with
an electric voltage (i.e. �kþ).

Strain–displacement relations

The general nonlinear strain–displacement relation
for the laminated composite curved panel structure

Figure 1. Geometry and dimension of the doubly-curved

piezoelectric composite panel.
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with and without piezoelectric material is expressed
by considering Green-Lagrange type nonlinearity33

"f g ¼ "lf g þ "nlf g ð5Þ

where "lf gand "nlf g are the linear and the nonlinear
strain tensors, respectively and the strain tensors are
modified in matrix form as follows:

The expanded forms of the above linear/nonlinear
strain terms are as below

"x

"y

"z

"yz

"xz

"xy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

"0x þ zk1x þ z2k2x þ z3k3x

"0y þ zk1y þ z2k2y þ z3k3y

"0z
"0yz þ zk1yz þ z2k2yz þ z3k3yz

"0xz þ zk1xz þ z2k2xz þ z3k3xz
"0xy þ zk1xy þ z2k2xy þ z3k3xy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ Tl½ �6�21 "lf g21�1

ð6Þ

"nlx
"nly

"nlz
"nlyz

"nlxz
"nlxy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

"nl0x þzk
nl1
x þz

2knl2x þz
3knl3x þz

4knl4x þz
5knl5x þz

6knl6x

"nl0y þzk
nl1
y þz

2knl2y þz
3knl3y þz

4knl4y þz
5knl5y þz

6knl6y

"nl0z þzk
nl1
z þz

2knl2z þz
3knl3z þz

4knl4z

"nl0yz þzk
nl1
yz þz

2knl2yz þz
3knl3yz þz

4knl4yz þz
5knl5yz

"nl0xz þzk
nl1
xz þz

2knl2xz þz
3knl3xz þz

4knl4xz þz
5knl5xz

"nl0xy þzk
nl1
xy þz

2knl2xy þz
3knl3xy þz

4knl4xy þz
5knl5xy þz

6knl6xy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ Tnl½ �6�38 "nlf g38�1

ð7Þ

The electric field ‘E’ can be expressed as the nega-
tive gradient of electric potential (�)

Ef g ¼ Ex Ey Ez

� �T
¼ �@�=@x �

@�
�
@y �

@�=@z

n oT
ð8Þ

Now, substituting equation (2) in equation (8), the
electric field variables along x, y and z-axes can be
obtained as

Ef g ¼ Ex Ey Ez

� �T
¼ T�
� �

3x8
E0
� �

8x1

E0
i

� �
8x1
¼ �

�e
hp
¼ B�
� �

8x3
�ef g3x1

ð9Þ

The terms with superscripts ‘0’, ‘1’, ‘2–6’ are the
membrane, curvature and higher-order strain terms,
respectively in their corresponding linear and nonlinear
mid-plane strain matrices. The individual linear and
the nonlinear strain terms are provided in Appendix
1. [Tl], [Tnl] and [T�] are the thickness coordinate
matrices related to the linear, nonlinear strain–dis-
placement relation and electric field potential relation,
respectively and their details can be seen in Singh
et al.32

Constitutive relations

The laminated composite shell panel is assumed to be
consisting of a number of elastic substrate laminates
integrated with piezoelectric actuating and sensing
layers. The piezoelectric constitutive equations show-
ing the coupling between the elastic and electric field
are given by

DE
� �

¼ e½ �T "f g � 2½ � Ef g ð10Þ

�f g ¼ Q½ � "f g � e½ � Ef g ð11Þ

"xx

"yy

"zz

"yz

"xz

"xy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

@u

@x
þ

w

Rx

	 

@v

@y
þ

w

Ry

	 

@w

@z

	 

@v

@z
þ
@w

@y
�

v

Ry

	 

@u

@z
þ
@w

@x
�

u

Rx

	 

@u

@y
þ
@v

@x
þ

2w

Rxy

	 


8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

þ
1

2

@u

@x
þ

w

Rx

	 
2

þ
@v

@x
þ

w

Rxy

	 
2

þ
@w

@x
�

u

Rx

	 
2
" #

@u

@y
þ

w

Rxy

	 
2

þ
@v

@y
þ

w

Ry

	 
2

þ
@w

@y
�

v

Ry

	 
2
" #

@u

@z

	 
2

þ
@v

@z

	 
2

þ
@w

@z

	 
2
" #

2
@u

@z

@u

@y
þ

w

Rxy

	 

þ
@v

@z

@v

@y
þ

w

Ry

	 

þ
@w

@z

@w

@y
�

v

Ry

	 
� �

2
@u

@z

@u

@x
þ

w

Rx

	 

þ
@v

@z

@v

@x
þ

w

Rxy

	 

þ
@w

@z

@w

@x
�

u

Rx

	 
� �

2
@u

@y
þ

w

Rxy

	 

@u

@x
þ

w

Rx

	 

þ

@v

@y
þ

w

Ry

	 

@v

@x
þ

w

Rxy

	 

þ

@w

@y
�

v

Ry

	 

@w

@x
�

u

Rx

	 
� �

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;
ð4Þ
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where Ef g, DE
� �

, �f g and "f g are the electric field,
electric displacement, stress and strain vectors,
respectively, whereas Q½ �, e½ � and 2½ � are the constitu-
tive matrix, piezoelectric stress matrix and dielectric
constant matrix, respectively.

The piezoelectric stress matrices for PZT/polyviny-
lidene difluoride (PVDF) and active fiber composite
(AFC)/macro fiber composite (MFC) are given as

ek
� �

PVDF=PZT
¼

0 0 0 e14 e15 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36

2
64

3
75,

ek
� �

AFC=MFC
¼

e11 e12 0 0 0 e16

0 0 0 e24 e25 0

0 0 0 e34 e35 0

2
64

3
75

k

ð12Þ

The dielectric constant matrix is given as

2k
� �
¼

211 212 0
212 222 0
0 0 233

2
4

3
5

k

ð13Þ

Energy equation

The structural displacements due to external electro-
mechanical loading and the total potential energy of
the system are expressed as

Tp ¼
1

2

Xn
i¼1

Z
v

"k
� �T

�k
� �

dv

"

�

Z
v

Eif g
T DE

s

� �
dv�

Z
v

Eif g
T DE

a

� �
dv

� ð14Þ

where the subscript ‘i’ represents ‘a’ and ‘s’ for the actu-
ator and sensor, respectively. Substituting the equations
(12) and (13) the above equation can be rewritten as

TP¼
1=2

Z
A

�

"lf g
T D1½ � "f gþ "f gT D2½ � "nlf g

þ "nlf g
T D3½ � "f gþ "nlf g

T D4½ � "nlf g

� "f gT D5½ � E
0

� �
� E0
� �T

D6½ � "f g� "nlf g
T D7½ � E

0
� �

� E0
� �T

D8½ � "nlf g� E0
� �T

D9½ � E
0

� �

0
BBBB@

1
CCCCAdA

ð15Þ

where D1½ �, D2½ �, D3½ �, D4½ �, D5½ �, D6½ �, D7½ �, D8½ � and
D9½ � are the linear and nonlinear, uncoupled and
coupled electromechanical material stiffness matrices.

System governing equation

The governing equation of motion of the structural
system under the dynamic load is obtained by using

the classical Hamilton’s principle. This is also known
as the dynamic version of the principle of minimum
potential energy (PMPE) and can be expressed in
terms of Lagrangian ‘L’ as

I ¼

Z t2

t1

Ldt ¼

Z t2

t1

TP � TKEð Þdt ð16Þ

where the kinetic energy (TKE) of the laminate is
given by

TKE ¼
1

2

Xn
k¼1

Z
v

_d
n oT

�k _d
n o

dv ð17Þ

where �k is the mass density of kth layer. From the
above minimum potential energy and Hamilton’s
principle

�

Z t2

t1

TP � TKEð Þdt ¼ 0 ð18Þ

In the present study, a nine noded Lagrangian iso-
parametric quadrilateral element is employed to dis-
cretize the laminated composite panel domain. The
element geometry, displacement and electric potential
vectors over each element using isoparametric concept
are written in terms of interpolation function and
expressed as

x ¼
X9
i¼1

Nixi, y ¼
X9
i¼1

Niyi, d0f g ¼
X9
i¼1

Ni d0if g;

�e0f g ¼
X9
i¼1

Ni �e0if g

ð19Þ

Here, Ni½ � is the interpolation function of the ith
node, xi and yi are the geometry coordinates in x and
y-direction, respectively. d0if g ¼ u0i, v0i,½ w0i, �xi,
�yi, �zi, xi,  yi, lxi, lyi � and �e0if g ¼ �0i �1i �2i

� �
are the unknown mechanical displacement and the
electric potential vector for the ith node of the element.

Similarly, the mid-plane linear and nonlinear strain
vectors in terms of their nodal displacement vector
can be written as

"lf g21�1 ¼ Bl½ �21�10 dof g10�1, "nlf g38�1

¼
1

2
A½ �38�27 G½ �27�1 d0f g10�1,

E0
i

� �
8x1
¼ �

�e
hp
¼ B�
� �

8x3
�ef g3x1, B�

� �
¼ �

Nj

hp

� �
j ¼ 1, 2 . . . , 9ð Þ

ð20Þ

where corresponding to i¼ 3, the layer is considered
to be PVDF/PZT, similarly, 1 refers to the AFC layer,
hp is the thickness of the PVDF sensor layer and
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spacing between the electrodes of interdigitated
electrodes (IDE) for AFC layer. Further, [Bl], [Bnl]
and [B�] are the linear, nonlinear strain–displacement
matrices and electric field-electric potential matrices,
respectively. These matrices along with [G] matrix
can be obtained by multiplying corresponding differ-
ential operator matrix and interpolation matrix.
[A] is the function of displacements corresponding
to the nonlinear strain. The individual terms of
matrices [A], [Bl], [Bnl], [B�] and [G] are provided in
Singh et al.32

Substituting equations (15) and (17) in equation
(18) and using equation (20) the system governing
equation can be conceded as

M½ � €d
n o
þ Kð df gÞ
� �

df g ¼ Fmf g þ Fef g ð21Þ

Kð df gÞ
� �

¼ Kd þ Kdnl½ � � Kdi þ Kdnli½ � K��
� ��1

� Kid þ
1

2
Kidnl

� �
ð22Þ

Fmf g ¼

Z 1

�1

Z 1

�1

N½ �T q
� �

Jj jd�d� ð23Þ

Fef g ¼

Z 1

�1

Z 1

�1

N½ �T�E x, yð Þ Jj jd�d�

¼
233

zk�1 � zkð Þ

Z 1

�1

Z 1

�1

N½ �T �ef g Jj jd�d�

ð24Þ

M½ � ¼

Z 1

�1

Z 1

�1

N½ �T m½ � N½ � Jj jd�d�;

m½ � ¼
Xn
k¼1

Z zkþ1

zk

fmz½ �
T �k
� �

fmz½ �

ð25Þ

Kd½ � ¼

Z 1

�1

Z 1

�1

Bl½ �
T D1½ � Bl½ � Jj jd�d� ð26Þ

Kdnl½ � ¼
1

2

Z 1

�1

Z 1

�1

Bl½ �
T D2½ � Bnl½ � Jj jd�d�

þ

Z 1

�1

Z 1

�1

Bnl½ �
T D3½ � Bl½ � Jj jd�d�

þ
1

2

Z 1

�1

Z 1

�1

Bnl½ �
T D4½ � Bnl½ � Jj jd�d�

ð27Þ

Kdi½ � ¼

Z 1

�1

Z 1

�1

Bl½ �
T D5½ � B�i

� �
Jj jd�d�, Kdi½ � ¼ Kid½ �

T

ð28Þ

Kdnli½ � ¼

Z 1

�1

Z 1

�1

Bnl½ �
T D7½ � B�i

� �
Jj jd�d�;

Kidnl½ � ¼ Kdnli½ �
T

ð29Þ

K��i
� �

¼

Z 1

�1

Z 1

�1

B�i
� �T

D9½ � B�i
� �

Jj jd�d� ð30Þ

Here, i¼ a and s stand for the actuator and sensor,
respectively.

In the above equations, [M] is the mass matrix, [Kd]
and [Kdnl] are the linear and nonlinear elastic stiffness
matrices, respectively. [Kid] and [Kidnl] (i¼ a, s) are the
linear and nonlinear electro-elastic coupling stiffness
matrices for the sensor and actuator while, [Kdi] and
[Kdnli] (i¼ a, s) are the linear and nonlinear elastic-
electro coupling matrices for the sensor and actuator,
respectively. {Fm} is the applied mechanical load and
{Fe} is the applied electric force vector whereas,
�E x, yð Þ is the surface charge density.

Solution technique

The desired nonlinear responses have been obtained
by solving the corresponding governing equilibrium
equations using the direct iterative method in con-
junction with the nonlinear FEM. The governing
equilibrium equation for the transient system can be
rewritten as

K̂ð dnþ1
� �

Þ

h i
dnþ1
� �

¼ F̂
n o

n,nþ1
ð31Þ

The subscript nþ 1 refers to the time tnþ 1 at which
the solution is required

K̂ð dnþ1
� �

Þ

h i
¼ Kð dnþ1

� �
Þ

� �
þ a0 M½ �nþ1 ð32Þ

F̂
n o

n,nþ1
¼ Ff gnþ1þM½ �nþ1 Â

n o
s

ð33Þ

Â
n o

n
¼ a0 df gnþa2

_d
n o

n
þa3 _d

n o
n
, B̂
n o

n

¼ a1 df gnþa4
_d

n o
n
þa5 _d

n o
n

ð34Þ

where ai, i¼ 1, 2,. . .8 are defined as

	 ¼ 0:25, 
 ¼ 0:5, a0 ¼
1

	�t2
, a1 ¼




	�t
, a2 ¼

1

	�t

a3 ¼
1

2	
� 1, a4 ¼




	
� 1, a5 ¼ 0:5�t




	
� 2

	 

,

a6 ¼ �t 1� 

� �

, a7 ¼ �t 


ð35Þ

The nonlinear time-dependent governing equation,
i.e. equation (31) has been solved by an iterative
method. For every time step, the direct iterations
are applied to obtain the equilibrium and the stiffness
and force vectors are updated accordingly. The details
of the transient solution steps can be seen in Saviz.29

Nonlinear finite element

The algorithm for applying nonlinear finite element
(NFEM) in finding the solution of the governing

6 Proc IMechE Part C: J Mechanical Engineering Science 0(0)



nonlinear equilibrium equation (equation (21)) is pre-
sented in the form of a flowchart in Figure 2.34

Direct iterative method

The direct iterative method is incorporated along with
NFEM to find the nonlinear solution at the rth iter-
ation knowing the elemental stiffness at the (r� 1)th
iteration using following assembled set of equations.

K d0f g
r�1

� �� �
d0f g

r
¼ Ff g ð36Þ

where K d0f g
r�1

� �
is the global known nonlinear stiff-

ness and d0f g
ris the unknown solution at the rth

iteration.

Boundary constraints

In order to avoid the rigid body motion for the
numerical analysis, various support conditions
(clamped, C; simply supported, S; hinged, H; and

free, F) have been imposed on the edges of the
curved shell panels. The details of the restricted
degrees of freedoms for different support conditions
are presented in Table 1.

Results and discussion

The geometrically nonlinear transient bending
responses of curved piezoelectric composite shell
panels are presented using the presently developed
higher-order mathematical model. The developed
mathematical model is incorporated into a computer
programme written in MATLAB R2012b environ-
ment to get the desired linear and nonlinear transient
solutions. For the computation of the responses and
to avoid the locking a selective reduced integration,
i.e. (3� 3) and (2� 2) points are considered for the
bending and the shear stress cases. In addition,
the material properties and the details of support
conditions are given in Tables 1 and 2, respectively.
The NFEM equation is linearized using the direct

Figure 2. Nonlinear finite element programme for the solution of the model.
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iterative method and Newmark’s time integration
algorithm (constant-average-acceleration method)
with a time step of 50� 10�5 s. Two types of the
sensor and actuator arrangements namely collocated
(sensor is placed adjacent to the actuator) and non-
collocated (sensor is placed away from the actuator),
shown in Figure 3 are considered in the present ana-
lysis. The collocated and non-collocated configur-
ations are denoted by a notation ‘C’ and ‘NC’
respectively throughout the analysis. An anti-sym-
metric cross-ply square (a/b¼ 1) smart plate with the
collocated configuration (C-0/90/0/90/AFC/PVDF)
subjected to uniformly distributed load (UDL)
(q0¼ 1� 103N/m2) under simply supported boundary
condition is considered throughout the present study
unless specified otherwise. The efficacy and accuracy
of present developed nonlinear coupled FE model are
checked through the convergence of the linear and
nonlinear transient bending responses followed by
the validation study. A wide variety of numerical
examples are solved to bring out the effect of different
geometrical parameters (aspect ratio, thickness ratio,
curvature ratio), support conditions and shell forms)

and arrangement of sensor/actuator configuration on
the linear/nonlinear transient bending responses
are discussed in detail in the following sections.
The non-dimensional formula for transient displace-
ment is considered as follows

Linear/nonlinear central displacement wL=NL

� �
¼

WL=NL

h where subscript ‘L’ and ‘NL’ denote the linear
and nonlinear responses respectively.

Convergence and comparison study

In order to establish the stability and efficacy of the
presently developed coupled nonlinear FE model
to compute the linear and nonlinear transient bending
responses, the convergence test and validation
study have been carried out and presented in this sec-
tion. It is seen in Figure 4 that the linear transient
responses computed for two-layer thin (a/h¼ 100)
angle-ply (45�/�45�) laminated composite plate are
converging well with mesh refinement. Based on the
convergence study (6� 6) mesh has been employed for
throughout the present study. So as to validate the
linear transient responses a four-layer antisymmetric

Table 1. Material properties of substrate and piezoelectric layers.

Properties Substrate12 MFC12 PVDF35
Estimated

properties AFC15

E1 (GPa) 150.0 30.25 2.0 C11 (GPa) 32.6

E2 (GPa) 9.0 15.99 2.0 C22 (GPa) 7.2

n12 0.25 0.306 0.29 C12 (GPa) 4.3

G12 (GPa) 7.1 5.52 0.775 C66 (GPa) 1.05

G13 (GPa) 7.1 11.82 0.775 C44 (GPa) 1.29

G23 (GPa) 2.5 4.54 0.400 C55 (GPa) 1.29

e31 (cm�2) – – 0.046 e11(cm�2) �6.76

e32 (cm�2) – – 0.046 e12(cm�2) �0.076

d11 (pC/N) – 385.56 – – –

d12 (pC/N) – �171.43 – – –

e33 (nFm�1) – – 0.1062

e11 (nFm�1) – 14.3 – e11 (nFm�1) 8.599

r (Kgm�3) 1600 5019 1800 r (Kgm�3) 6700

MFC: macro fiber composite; PVDF: polyvinylidene difluoride; AFC: active fiber composite.

Table 2. Details of support conditions.

Type Locations Restricted degrees of freedom

CCCC At x¼ 0, a and y¼ 0, b u0 ¼ v0 ¼ w0 ¼ �x ¼ �z ¼  x ¼  y ¼ �x ¼ �y ¼ 0

SSSS At x¼ 0, a v0 ¼ w0 ¼ �y ¼ �z ¼  y ¼ �y ¼ 0

At y¼ 0, b u0 ¼ w0 ¼ �x ¼ �z ¼  x ¼ �x ¼ 0

SCSC At x¼ 0, a v0 ¼ w0 ¼ �y ¼ �z ¼  y ¼ �y ¼ 0

At y¼ 0, b u0 ¼ v0 ¼ w0 ¼ �x ¼ �y ¼ �z ¼  x ¼  y ¼ �x ¼ �y ¼ 0

HHHH At x¼ 0, a u0 ¼ v0 ¼ w0 ¼ �y ¼ �z ¼  x ¼  y ¼ �x ¼ �y ¼ 0

At y¼ 0, b u0 ¼ v0 ¼ w0 ¼ �x ¼ �z ¼  x ¼  y ¼ �x ¼ �y ¼ 0

At y¼ 0, b u0 6¼ v0 6¼ w0 6¼ �x 6¼ �y 6¼ �z 6¼  x 6¼  y 6¼ �x 6¼ �y
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angle-ply (45�/�45�/45�/�45�) laminated composite
plate example as in Chen et al.36 is considered. The
results computed using the present model is plotted in
Figure 5 which shows good agreement with that of the
published results.

Subsequently, to validate the nonlinear transient
bending responses, simply supported single/doubly
curved panel examples37,38 are considered. The geo-
metrical parameters and material properties are taken
to be similar to the considered references. The present

results along with the reference values are presented in
Figures 6 and 7 for the cylindrical and spherical com-
posite shell panel, respectively. It is seen that the pre-
sent transient responses are slightly higher when
compared to that of the reference values. It is
mainly due to the type of displacement field model
(highly flexible) and the solution technique adopted
in the present case in comparison to that adopted in
the reference model. It is worthy to mention that the
present model is based on the HSDT mid-plane

Figure 3. Different arrangements of sensing and actuating layers (Collocated-C and non-collocated-NC).

Figure 4. Convergence of linear transient response of two-layer thin (a/h¼ 100) angle-ply (�45�/45�) laminated composite plate.
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kinematics and full geometrical nonlinearity in Green-
Lagrange sense. In addition, the present model also
includes all the nonlinear higher-order strain terms
arising during formulation. Further, the present solu-
tions are obtained using a direct iterative method in
association with the FEM steps. However, both the
references37,38 have adopted the FSDT kinematics
and von-Karman nonlinear strain and solved via
Newton–Raphson technique in association with the
generalized differential quadrature method in Kundu
and Sinha37 and Kurtaran38, respectively.

Experimental study

The active suppression of dynamic responses has been
examined and presented in this section. The experimen-
tal setup utilised for this purpose is shown in Figure 8.
A carbon/epoxy composite plate model (1) is taken as

a host structure and bonded with PZT/sp-5H patches
(2) on its top and bottom faces. Two PZT-5H
(5.0 cm� 1.0 cm� 0.1 cm) patches are surface bonded
symmetrically at the top and bottom faces of the can-
tilever composite plate (10 cm� 10 cm� 0.15 cm) at a
distance of 1.0 cm from each side of the plate surface
using a commercial glue Araldite. A sinusoidal excita-
tion force (1.5N) at certain frequency (30Hz) is given
by the exciter (3) to the substrate using an amplifier (4).
An accelerometer (5) is mounted on the tip of the PZT
bonded composite plate to sense the physical signal, i.e.
acceleration response and the corresponding electric
analogue signal is fed to the data acquisition cDAQ/
9178 (6) for the transformation into the corresponding
digital signal. The acceleration obtained is integrated
using the presently developed LabVIEW graphical pro-
grame to get the deflection response on the display
window (7). The dynamic responses of the substrate

Figure 5. Comparison study of linear transient response of antisymmetric four-layer angle-ply (45�/�45�/45�/�45�) laminated

composite plate.

Figure 6. Validation study of nonlinear transient response of simply supported composite cylindrical shell panel.
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bonded with PZT patches, applied with different elec-
tric voltages such as 10V and 20V using an auto-trans-
former (8) are obtained. These experimentally obtained
values are compared with the corresponding numerical
solutions computed using the present geometrically
nonlinear higher order FE model and presented in
Figure 9. The importance of using the higher-order
mid-plane kinematics in conjunction with the Green-
Lagrange geometrical nonlinearity for modeling the
smart laminated composite structures is clearly evident
from the results. Moreover, the suppression of the
dynamic responses with the increase in electric voltage
applied can be seen from the results.

Numerical illustrations

The presently developed nonlinear higher-order
model is employed by varying different geometrical
parameter including the shell configuration for the
prediction of the nonlinear transient responses of
the laminated smart composite shell panel structure.
For the computation of the desired responses a

composite shell panel with a substrate layer of thick-
ness 0.002m surface bonded or embedded with the
MFC/AFC actuator with the electrode spacing
0.5mm, poled in fiber direction and PVDF sensor

Figure 7. Validation study of nonlinear transient response of simply supported composite spherical shell panel.

Figure 8. Experimental set up for transient analysis.

Figure 9. Comparison of dynamic responses of carbon/epoxy

plate bonded with PZT patches.
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poled in thickness direction has been considered.
Both the sensor and actuator are considered to have
equal thickness of 0.0005m. The dynamic bending
responses are computed using presently developed
nonlinear FE computer code in MATLAB environ-
ment. The influence of different geometrical param-
eters such as the aspect ratios (a/b), the thickness
ratios (b/h), the support conditions and different
sensor/actuator configuration (non-collocated and
collocated) is investigated in this present study.

Effect of curvature ratio (R/b) on nonlinear transi-
ent bending responses of single/doubly curved piezo-
electric composite shell panels

As the composite shell panels use flexural strength
as well as the membrane actions about the mid-surface,
it becomes very essential to examine the effect of curva-
ture ratio on the transient responses with large ampli-
tude. In this regard the nonlinear transient bending
responses of two different forms of piezoelectric com-
posite shell panels (i.e. cylindrical and hyperboloid) are
computed at three different values of curvature ratios
(R/b¼ 5, 10 and 100) for collocated (C-0/90/90/0/
AFC/PVDF) and non-collocated (NC-AFC /0/90/90/
0/PVDF) sensor/actuator arrangements. It is clearly
evident from the results presented in Figures 10
and 11 that the non-collocated arrangement is showing

Figure 10. Effect of curvature ratio on nonlinear transient response of simply supported composite cylindrical shell panel.

Figure 11. Effect of curvature ratio on nonlinear transient response of simply supported composite hyperboloid shell panel.
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higher values of dynamic responses irrespective of shell
geometry. It is also noted that the increase in curvature
ratio improves the flexibility of the structural shell
panels and thus intensifies the large amplitude
deformation.

Effect of aspect ratio (a/b) on nonlinear transient bending

responses of single/doubly curved piezoelectric composite

shell panels. The aspect ratio (a/b) defines the shape
of the structural component, i.e. square or rectangular
geometry and it affects the strength of the structural
component directly because of the variation of the
moment of inertia. The nonlinear transient bending

responses of two different forms of piezoelectric com-
posite curved (cylindrical and ellipsoid) panels are
computed for three different values of aspect ratios
(a/b¼ 0.5, 1.0 and 1.5) with collocated (C-0/90/90/0/
AFC/PVDF) and non-collocated (NC-AFC/0/90/90/
0/PVDF) sensor/actuator arrangements. It is clear
from Figures 12 and 13 that the cylindrical shell
panels undergo the highest value of large amplitude
dynamic displacement whereas the ellipsoid panels
exhibit the smallest one for the same value of UDL
mechanical loading. Moreover, the increase in aspect
ratio reduces the dynamic responses to a great extent
in all the cases.

Figure 12. Effect of aspect ratio on nonlinear transient response of simply supported composite cylindrical shell panel.

Figure 13. Effect of aspect ratio on nonlinear transient response of simply supported composite ellipsoid shell panel.
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Effect of thickness ratio (a/h) on nonlinear transient bending

responses of single/doubly curved piezoelectric composite

shell panels. The thickness ratio of the structure
and/or structural component governs the type of
shear deformation theory used for analyzing the behav-
iour of laminated composite plate/shell structures.
The effect of thickness ratio (a/h¼ 50, 80, 100) on the
nonlinear transient bending responses of cylindrical and
hyperboloid shell panels with two types sensor/actuator
arrangements (i.e. C-0/90/0/90/AFC/PVDF and NC-
AFC/0/90/0/90/PVDF) is investigated in this section.
It is noted from the results presented in Figures 14
and 15 that the nonlinear dynamic deformation is
more in case of the hyperboloid shell panel in compari-
son to the ellipsoid shell. It is also clear that the NC has

larger dynamic responses as compared to C and the
magnitude of the response increases monotonically
with the thickness ratio irrespective of shell forms. It
is also interesting to note that the effect of sensor/actu-
ator arrangement is less significant in case of cylindrical
shell whereas it is more in case of hyperboloid shells.

Effect of support conditions on nonlinear transient bending

responses of single/doubly curved piezoelectric composite

shell panels. The type of support conditions imposed
to any plate/shell structural component affects its’
stiffness/flexibility and therefore it becomes essential
to analyze its’ influence on the structural responses.
In this section, the nonlinear dynamic bending
responses smart composite curved panel with NC

Figure 14. Effect of thickness ratio on nonlinear transient response of simply supported composite cylindrical shell panel.

Figure 15. Effect of thickness ratio on nonlinear transient response of simply supported composite hyperboloid shell panel.
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Figure 18. Effect of different shell forms on nonlinear transient response of angle-ply for NC-arrangement.

Figure 17. Effect of different boundary conditions on nonlinear transient response of hyperboloid composite shell panel.

Figure 16. Effect of different boundary conditions on nonlinear transient response of cylindrical composite shell panel.
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are computed for the various types of support condi-
tions (SSSS/HHHH/CCCC/SCSC) and shown in
Figures 16 and 17 for the cylindrical and hyperboloid
type of shell panels, respectively. It is observed that as
the degree of constraints increases the magnitude of
nonlinear transient deformation decreases irrespective
of the shell geometrical configurations i.e. in case of
SSSS the responses are highest and in case of CCCC it
is the least. It is also noted that the cylindrical panel
shows higher magnitude of dynamic responses as
compared to the hyperboloid shell panels.

Effect of different shell forms on nonlinear transient responses

of cross-ply and angle-ply sensor/actuator arrangements. Shell
forms or shell geometrical configurations are defined on
the basis of the principal radii of curvatures (Rx and Ry)
and the twist radius (Rxy). As the present study is con-
fined to only the shallow shells the twist radius is infinite
(1) in all the shell forms. Therefore, the nonlinear
dynamic responses of different shell form namely, cylin-
drical, hyperboloid, ellipsoid, spherical and flat panels
are computed and presented in this section. Figures 18
and 19 show the nonlinear transient deflection values
for the non-collocated angle-ply (NC-AFC/[45�/�45�]s/
PVDF) and the collocated cross-ply (C-[0�/90�]s/MFC/
PVDF) configurations, respectively. It is seen that the
NC-configuration suffers with the higher nonlinear
dynamic deformation as compared to the C-configura-
tion. Thus, it can be inferred that the later one has the
better control ability for such high amplitude responses.
In addition to that the influence of the placement of
piezoelectric sensor and actuator on the nonlinear tran-
sient responses of the smart composite shell panels is
clearly evident from the figures.

Conclusion

The geometrically nonlinear transient bending responses
of the curved piezoelectric composite shell panel

structure computed numerically using a novel higher-
order nonlinear mathematical model including
Green-Lagrange nonlinear strain field. The coupled
electromechanical formulation is developed in associ-
ation with the FEM. The linear and nonlinear dynamic
deflections are computed using Newmark’s time integra-
tion algorithm (constant average-acceleration method)
including the direct iterative method. The linear and
nonlinear dynamic responses obtained using the present
nonlinear model are compared with published results to
demonstrate the accuracy. Additionally, an experimen-
tal validation for the active suppression of the dynamic
responses of the PZT bonded composite plate verifies to
access the robustness and inevitability of the presently
developed higher-order nonlinear model. Further, the
effect of geometrical parameters like curvature ratio
(R/a), thickness ratio (a/h) and aspect ratio (a/b) and
the boundary conditions on the nonlinear dynamic
responses of the single/doubly curved piezoelectric
bonded composite shell panels for the collocated and
non-collocated types of sensor and the actuator
arrangements are investigated. It is observed that the
spherical panels reveal the highest amplitude of dynamic
responses whereas the ellipsoid panels show the lowest
one irrespective of the lamination scheme and the
sensor/actuator arrangements. It is interesting to note
that the non-collocated types of sensor or actuator
arrangement show the higher magnitude of nonlinear
dynamic responses in comparison to the collocated
arrangement irrespective of shell forms and the other
geometrical parameters. Thus, it can be concluded
that the collocated arrangement is more capable of con-
trolling the nonlinear dynamic responses in comparison
to the non-collocated arrangement.
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Appendix

Notation

a, b and h length, width and thickness of the

shell panel
a=b aspect ratios
a=h thickness ratios
Bl½ � and Bnl½ � linear and nonlinear strain-displace-

ment matrix
d, d0 global and mid-plane displacement

vectors
Kd½ �, Kd�

� �
linear elastic, coupled electro-elastic

K�d
� �

, K��
� �

and electric stiffness matrices
KL½ � linear stiffness matrix
KNL½ � geometric stiffness matrix
R=a curvature ratios
Rx, Ry principal radii of curvatures of shell

panel
u, v and w displacements in x, y and z direction

respectively
x, y, z cartesian coordinate axes

"f g strain tensor
"lf g, "nlf g linear and nonlinear strain tensors
� electric potential
 x, y, lx, ly higher order terms of Taylor series

expansion
�f g stress tensor
�x, �y the rotations with respect to y and x

direction

�z thickness stretching term or trans-
verse extension

Appendix 1

Mid-plane linear "lf g and nonlinear "nlf g strain terms
Individual terms of linear mid-plane strain matrix

of equation (6)

"0x ¼ u,x "
0
y ¼ v,y "

0
z ¼ w,z,

"0yz ¼ �y þ w,y, "
0
xz ¼ �x þ w,x, "

0
xy ¼ u,y þ v,x, k

1
x ¼ �x,x,

k2x ¼  x,x, k
3
x ¼ lx,x, k1y ¼ �y,y, k

2
y ¼  y,y, k

3
y ¼ ly,y,

k1yz ¼ �z,y þ 2 y, k
2
yz ¼ 3ly �  y

�
Ry

, k3yz ¼
�ly

�
Ry

,

k1xz ¼ 2�x þ �z,x, k
2
xz ¼ 3lx �  x=Rx

, k3xz ¼
�lx=Rx

,

k1xy ¼ �y,x þ �x,y, k
2
xy ¼  x,y þ  y,x, k

3
xy ¼ lx,y þ ly,x

Additionally, the combined terms are provided below

u,x ¼ @u0=@xþ
w0=Rx

, u,y ¼ @u0
�
@yþ

w0
�
Rxy

,

v,x ¼ @v0=@xþ
w0
�
Rxy

, v,y ¼ @v0
�
@yþ

w0
�
Ry

,

w,x ¼
@w0=@x�

u0=Rx
, w,y ¼

@w0
�
@y�

v0
�
Ry

,

w,z ¼
@w0=@z, �

�
x,x ¼

@�x=@xþ
�z=Rx

,  x,x ¼
@ x=@x,

 x,y ¼
@ x

�
@y,  y,x ¼

@ y
�
@x,  y,y ¼

@ y
�
@y,

lx,x ¼ @lx=@x, ly,x ¼
@ly
�
@x, ly,y ¼

@ly
�
@x

Individual terms in nonlinear mid-plane strain
matrix of equation (7)

"nl0x ¼
1=2 u,x

� �2
þ v,x
� �2

þ w,x

� �2h i
,

"nl0y ¼
1=2 u,y

� �2
þ v,y
� �2

þ w,y

� �2h i
,

"nl0z ¼
1=2 �xð Þ

2
þ �y
� �2
þ �zð Þ

2
h i

,

"nl0yz ¼ �xu,y þ �yv,y þ �zw,y, "
nl0
xz ¼ �xu,x þ �yv,x þ �zw,x,

"nl0xy ¼ u,xu,y þ v,xv,y þ w,xw,y, k
nl1
x ¼ u,x�x,x þ v,x�y,x

þ w,x�z,x þ �z=Rxð Þu,x þ �z=Rxy

� �
v,x � �x=Rxð Þw,x

knl2x ¼ �x,x
� �2

þ �y,x
� �2

þ �z,x
� �2

þu,x x,x þ v,x y,x

þ �z=Rxð Þu,x þ �z=Rxy

� �
v,x � �x=Rxð Þw,x

knl3x ¼ lx,xu,x þ ly,xu,x � w,xlx=Rx þ  x,x�
�
x,x þ  y,x�

�
y,x

knl4x ¼  x,x�
�
x,x þ  y,x�

�
y,x þ lx,xu,x þ ly,xu,x

� w,xlx=Rx þ �z=Rxy

� �
v,x � �x=Rxð Þw,x

knl5x ¼ u,x x,x þ v,x y,x þ �z=Rxð Þu,x þ �z=Rxy

� �
v,x

� �x=Rxð Þw,x þ  x,x�
�
x,x þ  y,x�

�
y,x

knl6x ¼ lx,x
� �2

þ ly,x
� �2

þ lx=Rxð Þ
2;

knl1y ¼ lx,xu,x þ ly,xu,x þ u,x x,x þ u,x x,x

knl2y ¼ �x,x
� �2

þ �y,x
� �2

þ �z,x
� �2

þu,x x,x

þ v,x y,x þ �z=Rxð Þu,x
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knl4y ¼ u,x�x,x þ v,x�y,x þ w,x�z,x þ �z=Rxð Þu,x

þ �z=Rxy

� �
v,x � �x=Rxð Þw,x

knl2xy ¼ lx,xu,x þ ly,xu,x � w,xlx=Rx þ  x,x�
�
x,xn

þ  y,x�
�
y,x

knl3xy ¼ u,x�x,x þ v,x�y,x þ w,x�z,x þ �z=Rxð Þu,x

þ �z=Rxy

� �
v,x � �x=Rxð Þw,x

knl4xy ¼ lx,xu,x þ ly,xu,x � w,xlx=Rx þ  x,x�
�
x,x

þ lx,xu,x þ ly,xu,x þ u,x x,x þ u,x x,x

knl5xy ¼ u,x x,x þ u,x x,x � w,xlx=Rx þ  x,x�
�
x,x

þ lx,xu,x þ ly,xu,x þ u,x x,x þ u,x x,x

knl6xy ¼ lxly=RxRyþlx,xu,x þ ly,xu,x
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