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Abstract The field of 2-dimensional (2D) materials has
witnessed a sharp growth since its inception and can
majorly be attributed to the substantial technical and
scientific developments, leading to significant improve-
ments in their syntheses, characterization and applications.
In the list of 2D materials, the relatively newer addition is
phosphorene, which ideally consists of a single layer of
black phosphorous. Keeping in mind the past, and ongoing
research activities, this short account offers a brief
overview of the present status and the associated
challenges in the field of phosphorene-related research,
with special emphasis on their syntheses, properties,
applications and future opportunities.
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1 Introduction

It is undeniable that the current energy concerns call for
both scientific and industrial developments specifically
related to the current manufacturing processes and the
materials for energy-intensive applications [1,2]. To make
the processes more efficient, selective and environmentally
friendly, the development of different materials and
fundamental understanding of their properties are essential.
In this regard, nanomaterials (the materials, size of which
falls between 10 to 100 nm), by virtue of their unique size
and shape-dependent properties, have come a long way
since Feynman first proposed the concept [3–5]. One of
most recent albeit important class among the different
types of nanomaterials is 2-dimensional (2D) nanomater-

ials, which comprise of a single layer with the thickness of
one or two atom(s) [6]. Historically, graphene (or
graphene-related systems) gained popularity as 2D nano-
materials because of their exceptional electrical, thermal,
mechanical properties, leading to various applications.
However, in recent past, in parallel to the growth of
graphene-related research, several 2D nanomaterials like
TMDs (Transition Metal Dichalcogenides, MX2, M = Mo,
W, etc., X = S, Se, etc.) [7], germenes, silicenes are
reported to overcome the challenges related to graphene
[8]. In that list, probably the newest addition is single layer
black phosphorous (BP) or popularly known as phosphor-
ene (Fig. 1) [9].
Despite the first synthetic report of black phosphorus by

Bridgman in 1914 [10], the research related to it did not
flourish as anticipated mainly because of it’s not-so-trivial
high-pressure synthetic procedures and the limited knowl-
edge about it’s properties and applications. The field was
rejuvenated when Park et al. utilized BP as anode materials
in lithium-ion battery [11]. Subsequently, several reports
identified the potential of BP as an active component in
various energy-related devices [12]. In addition to the
advancement in synthetic and technological tools, this
revival can also be attributed to the researchers’ quest to
identify novel 2D nanomaterials, especially to resolve
some of the issues related to graphene-based systems. The
reclaimed fame of BP essentially originates from the 2D
variations of BP and their corresponding layer-dependent
properties [13]. Technically, only a single layer (in a more
stringent definition of the term) of BP should fall under this
category. But from a single layer to few layers (< 5) of BP
can also be included in this category. Nonetheless,
irrespective of the initial dispute regarding the nomencla-
ture, they all are termed as “phosphorene” in order to
establish its resemblance with graphene [14].
Among the reported allotropes of phosphorous, BP, the

thermodynamically most stable allotrope, was first synthe-
sized from white phosphorous using high pressure and
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temperature [10]. In its bulk form, it consists of vertically
stacked 2D sheets, each of which is called phosphorene
[17]. The crystallographic and other characterization
evidences (vide infra) suggest a puckered configuration
of phosphorene where each sp3 hybridized phosphorous
atom forms bonds with three neighboring phosphorous,
leaving a lone-pair of electrons on them (Fig. 2). Because
of this sp3 hybridization, the phosphorene single layer does
not form a single sheet-like graphene. Every single layer
contains two atomic layers, which leads to two distinct
distances among the neighboring phosphorous atoms: one
with the neighboring atom in the same layer (2.224 Å) and
the other one is between the two layers (2.244 Å) [17,18].
In case of BP, each of the single layers of phosphorene is
connected via weak interlayer van der Walls interaction
(inter-layer spacing of ~0.53 nm as compared to 0.33 nm
spacing in graphene) and can easily be disrupted to yield a
single layer of phosphorene [13,19]. Due to the presence of
two atomic layers in a single layer of phosphorene,
originating from the unique bonding patterns of phosphor-
ous, both “zigzag” and “arm-chair” structural features are
observed, which in turn display the anisotropic behavior of
phosphorene along the two directions [13,15].

2 Current status

In view of the current scientific progress on phosphorene
and/or BP, the following sub-sections attempt to summar-
ize the highlights of synthesis, characterization/properties

and applications of phosphorene. In addition to the
available reviews and primary literatures on phosphorene,
the following subsections have been described based on
the recent review by Rumeli and co-workers [20] as it aims
to cover broad areas of research on phosphorene.

2.1 Characterization and properties

The investigation of mechanical, photonic, electrical,
optical properties of phosphorene has been of great interest
in recent times due to significant advancement of
instrumental techniques. In the current section, detailed
discussion on properties related to specific applications is
omitted to avoid possible overlap with the application
sections (vide infra).
The microscopic techniques has definitely emerged as a

powerful technique in order to understand the morphology
as well as crystal stacking of the phosphorene [21]. Along
with the high resolution transmission electron microscopy
(HRTEM), which is in good agreement with the crystal-
lographic evidence, the selected area electron diffraction
(SAED) images show characteristic (101), (002) and (200)
crystal planes, thereby offering a combination of methods
to recognize a single crystal of phosphorene (Fig. 2)
[21,22]. For example, the intensity ratio of (101) and (002)
planes provides an indirect estimation of no. of layers in
BP: 2.6 for single layer, 0.3 for bilayer, 0.3 for trilayer, etc.
Additionally, based on these microscopic evidence
(including atomic force microscopy, AFM), a non-single
crystal of black phosphorus as well as different kinds of

Fig. 1 (a) Comparison of the 2D materials in terms of number of published articles during a decade (The vertical axis is in log scale. Key
words: graphene, hexagonal boron nitride, phosphorene, mxenes, MoS2 or WS2 or MoSe2 or WSe2 or MoTe2, silicene or germanene;
Search engine: Google Scholar); (b) Crystal structure of phosphorene (side and top view); (c) Structures of three predicted polymorphs of
phosphorene; (d) Crystal structures of monolayer of MoS2 (left) and graphene (right). Images c adapted with permission from the ref. [15]
Copyright 2015 Nature Publishing Group, and the ref. [16]. Copyright 2015 American Chemical Society
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stacking for multilayer phosphorene, can be identified
[23,24].
The fact that the direct band gap of a single layer

phosphorene is 2.05 eV (which falls under visible light
region) opens up newer opportunities in the photovoltaic
applications of phosphorene [28]. As opposed to graphene
where valence and conduction bands are composed of
mainly p orbitals, in case of phosphorene, both s and p

orbitals contribute to the orbital hybridization in its valence
and conduction band, dictating the band-gap properties
[29,30]. Additionally, both theoretical and experimental
studies strongly support an inverse correlation between the
number of layers of phosphorene and its band-gap [30,31].
One of the important factors that influence the electron-

hole transport in 2D materials is the mobility of the charge-
carriers and generally a reciprocal relationship between the

Fig. 2 Phosphorene: (a) Crystal structure, (b) electronic band structure, (c) AFM image, HR-TEM of (d) side view and (g) top view, (e)
electron energy loss spectroscopy spectrum, (f) side view and top view of atomic structure, (h) SAED, (i) optical micrograph, and (j)
Raman spectra. (a) Reproduced with permission from the ref. [25], Copyright 2017, American Chemical Society. (b) Reproduced with
permission from Copyright 2015, American Chemical Society. (c) Reproduced with permission from the ref. [14], Copyright 2014,
American Chemical Society. (d) Reproduced with permission from the ref. [21], Copyright 2015, AIP Publishing LLC. (e–h) Reproduced
with permission from the ref. [20], Copyright 2016, IOP Science. (i) Reproduced with permission from the ref. [26], Copyright 2017,
Macmillan Publishers limited. (j) Reproduced with permission from the ref. [27], Copyright 2015, Macmillan Publishers limited
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charge career mobility and effective mass is observed. For
phosphorene, the theoretical studies showed that the
effective masses as well as the mobility of electron and
holes are different in x and y directions, suggesting an
asymmetric and anisotropic behavior [31]. In spite of
having a high effective mass, extremely small deforma-
tional potential predicts a hole-dominant transport, which
allows charge-separation and subsequent transport of
electrons and holes in different directions [32].
The optical properties of phosphorene can often be

extracted from their band-gap properties. In case of
phosphorene, strong absorption peaks in the ultraviolet
region (236–240 nm) can vary depending on the nos. of
layers, surface modification, tensile-strain [33–35]. In fact,
such modifications often bring out specific properties
required for particular applications. For instance, while
armchair phosphorene nanoribbons exhibit direct optical
band gap, no optical activity can be seen in case of zigzag
orientation [36]. Due to the difference in optical property
along the two directions, armchair direction aids better
photon diffusion process, enhancing the photo(electro)
catalytic properties along that direction [36]. Though, this
direction-oriented control of optical properties indeed
helps to implement phosphorene in various applications
such as solar fuel production, hydrogen evolution, water
splitting etc., the fundamental understanding of the
directional optical properties is yet to be fully developed.
In addition to crystallographic and microscopic data,

vibrational spectroscopies such as infra-red (IR) and
Raman also provide very useful structural and physico-
chemical information including crystal orientation [37],
layer numbers [38], strain-based deformation [18], etc. IR
spectroscopy is normally used to obtain details information
about the presence/absence of functional groups. For
example, as compared to pristine phosphorene, the
presence of surface-oxidized species (like P–O, P = O,
etc.) as well as heteroatom doping (P–N, P–F, etc.) can be
easily identified using this technique [39,40]. In addition to
IR, Raman spectroscopic techniques have also been widely
used for the characterization of phosphorene. Recent
improvements in the sophistication of Raman spectroscopy
allow performing experiments in a non-destructive way.
For phosphorene, these experiments provide essential
information, which can be correlated with the information
obtained from other characterization techniques. In gen-
eral, 3 vibrational modes namely A1

g, B2
g and A2

g are
observed for phosphorene at 362, 439 and 471 cm–1,
respectively [41,42]. It is shown that the peak position (and
also full width half maxima) of A2

g mode depends strongly
on the number of layers [43,44]. For bilayer, trilayer and
bulk phosphorene, the peaks corresponding to A2

g mode
appear as red-shifted (470, 469 and 468 cm–1 respectively)
[44]. Both theoretical and experimental findings continue
to shed light on the origin of different modes as well their
shifting pattern [27,45]. Recently the advanced low-

frequency Raman techniques (acquisition mode< 100
cm–1) have been utilized to specifically determine the
numbers of layers only to find a good agreement among
other techniques [46–48]. Additionally, interlayer breath-
ing corresponding to A3

g, A
4
g and other vibrational modes of

BP can also be identified using this technique and
significant works, are being carried out for further
consideration of this technique for phosphorene and
other 2D nanomaterials [49–51].
In spite of having various interesting directional and

layer-dependent properties of phosphorene, it’s stability is
one of the major concerns for it’s future developments in
various applications [27]. Since, without the proper
knowledge about the nature of interactions among
phosphorene (and/or BP) with air, water and other
environmental entities, it is almost impossible to develop
specific protection strategies; the current research has been
devoted to understand such interactions as well as the
possible degradation pathways of phosphorene [52]. For an
example, Castro-Neto and co-workers studied the oxida-
tion of mechanically exfoliated phosphorene upon expo-
sure to air to understand possible active sites of
degradation as well as the stability of surface oxide layer
[53]. Several protection strategies have been developed
based on the available information (vide infra) to enhance
the stability of phosphorene but it surely requires better
understanding of the nature of the interactions.
In addition to above-mentioned properties, other

application-driven properties such as non-linear optical
property, magnetism, spintronics, biocompatibility, etc. are
also currently being explored. While the efforts have just
continued to expand, these studies are expected to bring
out positive outcome with newer opportunities for novel
applications.

2.2 Preparation

The synthesis of phosphorene (2D form of BP) can be
linked to the preparation of BP itself, as most of the
preparations involve BP as a precursor. For the synthesis of
BP, a mineralized-assisted heating process was reported to
convert red phosphorous to BP in presence of SnI4/Sn in a
sealed tube [54]. Different variants of this method
(commonly known as “chemical-vapor-transport”) along
with some recently developed large-scale synthetic
strategies have been adopted mostly for the synthesis of
BP (rather than phosphorene) [55,56]. For the fabrication
of monolayer or few layers of phosphorene (mainly in the
form of thin films), both “top-down” and “bottom-up”
approaches have been considered (Fig. 3), adopting the
synthetic methods from its predecessor 2D materials,
graphene [57,58]. In particular, the “top-down” approach
for the synthesis of phosphorene, primarily refers to the
exfoliation of bulk BP by breaking of the weak van der
Walls interaction between the two monolayers [57]. On the
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other hand, the “bottom-up”method involves the synthesis
of phosphorene from molecular precursors [59]. Despite
the prevalence of both the methods in the literature, the
“top-down” approach gains the popularity predominantly
because of the ease of the synthesis as compared to the
other one.
The exfoliation strategies for the conversion of BP to

monolayer phosphorene, closely resembles to those of
graphite [60,61], TMDs [62], hexagonal boron nitride
(h-BN) [63], etc. to their respective 2D counterparts.
Among several exfoliation strategies, one of the popular
exfoliation strategies involves the isolation of monolayer
phosphorene using a “scotch-tape” [14,64], which was
originally developed for the preparation of graphene from
graphite. This type of mechanical exfoliation generally
follows additional cleaning steps to remove organic and
other impurities. However, despite wide use of this method
at laboratory scale, the concerns regarding reproducibility,
cleaning, characterization steps (after each exfoliation)
limit the large-scale synthesis of phosphorene and
alternative approaches have been pursued.
Excluding mechanical exfoliation, there are mainly two

major exfoliation procedures that are currently being
exploited for the synthesis of phosphorene: Liquid-assisted
exfoliation and alkali-metal-intercalation. In the first case,
mostly organic solvents such as N-methyl-2-pyrrolidone
(NMP), dimethylformamide (DMF), dimethyl sulfoxide
(DMSO), isopropanol etc. are used to disrupt the weak
interlayer van der Waals interaction [65]. Additionally, pre-
exfoliation protocols like grinding, sonication etc. also
contribute significantly to the success of this procedure.
The encapsulation of phosphorene especially by organic
solvents increases the stability of the materials by
protecting the material from the environment [65].
Recently, simple-sonication-based exfoliation strategy
[66] has also been employed utilizing water as a green
solvent and this type of protocol is expected to be widely
applicable in near future.
Among the other substances, which aids the exfoliation

process, alkali metals such as lithium, sodium etc. are also
capable of weakening inter-layer interaction, as exempli-
fied in case of TMDs [67]. In case of phosphorene, at first,

the alkali metals are used to intercalate between the layers
of phosphorene, which normally follows a subsequent
washing treatment with water to form a homogeneous
dispersion of 2D phosphorene [68,69]. Additional sonica-
tion treatment sometimes helps to control the numbers of
layers as well as the particle size. A relatively newer
method utilizes chemical surfactants to isolate the
phosphorene sheets. The surfactants like sodium dodecyl
sulfate (SDS), etc. have been used to synthesize exfoliated
phosphorene for various optical and photoluminescent
applications [70]. These “top-down” approaches offer
advantages for the synthesis and isolation procedures but
more efforts are needed to have a better control over the
shape, size and thickness of phosphorene.
The “bottom-up” approach is normally preferred when

precursor molecules/reagents, as well as the instruments (if
required) are readily accessible. For the synthesis of
phosphorene, various types of “chemical vapor deposition
(CVD)” are routinely used [71]. For instance, the thermal
conversion of red phosphorous to BP using “chemical-
vapor-transport” process (a variant of CVD) was reported
[54]. Following the same trend, different modified
protocols of CVD technique have already been established
for the deposition of BP from red phosphorous onto
specific substrates (including flexible ones) [55,56]. Apart
from red phosphorous as a precursor, various phosphor-
enes/BP have also been explored to fabricate phosphorene
on Si [72], Au (111) [73], GaN (111) [74] surfaces. Since
most of the reported CVD techniques do not always focus
on the mechanistic understanding of the procedures,
ongoing research efforts are focused to address both
thermodynamic and kinetic concerns regarding the growth
of phosphorene on different surfaces. As far as the
deposition of 2D phosphorene films on a particular surface
is concerned, generally three steps are considered:
nucleation of the smallest unit, expansion of the smallest
unit to larger deposition sites and the subsequent formation
of the phosphorene layer on the surface. At atomistic level,
such formation procedure can be a combination of several
processes among which the dissociation of the precursor,
adsorption of the dissociated species on the surface,
attachment of different units to obtain a film [75] are

Fig. 3 Common synthetic methods for the preparation of phosphorene
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considered to be the important ones. However, irrespective
of the strategies, it is important to understand various
nuances of different methods to have a better control of the
deposition processes as well as the quality of materials. For
instance, recently, P2 (two phosphorous atom atoms joined
together) dimer was claimed to be the smallest unit of for
the sublimation of phosphorene on the BP surface [76],
corroborating well with the growth of graphene where C2

was also considered to be the smallest unit [77,78]. The
present understanding of the mechanism along with recent
advancement in both CVD instruments as well as
corresponding characterization techniques is expected to
provide breakthroughs in large-scale synthesis of phos-
phorene [20].
For long-term use of phosphorene, the stability of

phosphorene in presence of heat, air, water and environ-
ment is crucial and a proper understanding of degradation
pathways including their thermodynamic and kinetic
parameters, characterization of the degradation products
etc. becomes imperative. Several groups have indeed
started looking into these areas and significant progress has
been observed within a short time. For example,
mechanically exfoliated phosphorene undergoes oxidation
in presence of air, resulting in a decrease of their electrical
properties [53]. The presence of lone-pair of electrons on
phosphorous atoms has been claimed to be responsible for
the inherent instability of phosphorene [79]. Since these
damages clearly have raised some concerns regarding the
long-term use of the materials, some passivation strategies
have also been developed to minimize such adverse
environmental effects. The encapsulation of phosphorene
between two layers of other 2D materials (e.g., h-BN,
graphene) [80], organic liquid exfoliation strategies, the
formation of particular protective layer (e.g., AlOx, etc.)
[52] over phosphorene sheets etc. are some of the protocols
that are currently being employed to improve the stability
of the materials for the long-term use. However, more
efforts are needed to understand the inherent chemistry that
are essential for the development of large-scale synthetic
procedures of phosphorene with long-term stability.

2.3 Applications

The advent of phosphorene is directly proportional to its
potential to be employed in various important applications.
Till date, researchers mainly focus on the electronic and
optical properties and their related applications [13,20],
leaving a vast pool of other applications to be explored.
Rechargeable Li-ion batteries are among the new classes

of secondary batteries, which gained popularity due to their
cycling stability, high storage capacity, high energy density
and they are currently available as power sources in
smartphones, tablets, laptops, etc. [81,82]. The Li-ion
battery mainly consists of two electrodes (anode and
cathode), an electrolyte and a separating membrane.
Generally, graphite acts as anode and lithium metal oxides

play the role of cathode material. The mobility of Li+ ion
through the membrane plays an important role in deciding
the final performance. Moreover, for a better utilization of
space, the modification of anode materials as compared to
cathode materials is preferred because of the fixed amount
of Li in lithium metal oxides [81]. Though graphite is by
far the most widely used anode material, its limited specific
energy calls for the development of better anode materials
[83].
Due to having high power density and long cycle life,

BP and phosphorene have attracted a great deal of attention
in recent years for battery-related applications [84]. In most
cases, instead of pure phosphorene, a composite of
phosphorene/BP and carbon nanomaterials (to increase
the electrical conductivity) is used as anode material in
Li-ion battery [11]. While such combinations provide
improvements in charge and discharge capacities, high
reversibility of BP and Li3P (starting material and the end
product of cathodic discharge reaction respectively) is
expected to offer a longer lifetime of the batteries [84].
Though there still remains concerns and challenges
regarding the stability of BP and phosphorene, volume-
change associated with periodic lithiation and delithiation
etc., efforts such as the development of passivation and
protection strategies (e.g., thermal annealing, P–C bond
formation, etc.) are currently being pursued to overcome
those challenges [85].
A newly developed Li-based battery, Li-S battery is also

considered to be a promising battery alternative because of
specific capacities of lithium and sulfur, normally used as a
Li-S cathode [86,87]. However, low electrical and ionic
conductivities of S, stability and dissolution of S, high
volume expansion upon lithiation pose some hurdles,
which need to be overcome for successful commercializa-
tion of Li-S battery [88,89]. Though as alternative
solutions, various carbon-based composites of sulfur
have been reported [90,91], the immobilization of sulfur
still remains an area of concern. In this respect,
phosphorene shows promises because of its ability to
form more stable P–S bonds [92]. Additionally, phosphor-
ene in similar cathode matrix was reported to reduce
polarizations, increase the efficiency of redox reactions and
also activate polysulfides, thereby providing a better
efficiency as compared to non-phosphorene-based Li-S
batteries [93].
In the list of rechargeable batteries, another class of

battery that shows huge promises as a potential replace-
ment for Li-ion battery is Na-ion battery because of the low
cost and high abundance of Na [94,95]. Similar to Li-ion
battery, the graphene-phosphorene composite has already
been recognized as potential anode materials [96]. While
graphene increases the electron transport, stacking of
phosphorene layers helps to accommodate the volume
expansion due to it’s intercalation with sodium [91]. Apart
from Na-ion battery, Mg-ion batteries, selenium batteries
are also emerging as potential replacements for Li-ion
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batteries and in most cases, phosphorene and/or phosphor-
ous-based composites/alloys have also started to be
employed for better performance [97,98].
Supercapacitors are indeed becoming one of the major

fields of modern-day research in electronics [99,100].
Materials with high specific surface area like graphene
have been reported as major contributors for the develop-
ment of double electrode supercapacitors with high
capacitance [101]. Recently, as an alternative to graphene,
phosphorene films, deposited on polyethylene terephtha-
late (PET) surface, has been utilized as supercapacitors to
obtain a capacitance value of 12.75 F∙cm–1 at a scanning
rate of 0.01 V∙s–1 [101]. In future, the development in
phosphorene fabrication and stabilization techniques is
expected to improve properties such as flexibility, high
power density, long cycle life, fast charge/discharge rate,
etc. [102] and offer significant advantages for the progress
in supercapacitor field.
One of the most important components in a photovoltaic

cell (or more specifically a solar cell) is a semiconductor
material, which generates electron-hole pairs when light
with a particular wavelength corresponding to its band gap,
falls on it. Once the electron-hole pair is generated, the
charges move to respective electrodes depending on the
external potential [103]. Since the first report of commer-
cialized solar cell made of mono or polycrystalline Si, the
field has witnessed a sharp growth leading to the
fabrication of next-generation solar cell (e.g., perovskite
solar cell, organic solar cell, etc.) [104–108]. In that list,
because of controllable band-gap as well as high electrical
conductivity, phosphorene has been recently included
[109–112]. In most cases, phosphorene is employed either
as composite materials or as an integral component of the
system (to bridge photoactive layer as well as electron
transport layer) [113]. In the latter case, it’s worth-
mentioning that the thickness of a phosphorene layer
dictates the performance of the solar cell. Due to favorable
compatibility of phosphorene with different components of
a solar cell, phosphorene is also considered (both
theoretically and experimentally) as an active constituent
for various types of solar cell like dye-sensitized solar cell,
perovskite solar cell, etc. [114]. Various combinations of
composites such as phosphorene/h-BN heterostructures,
TMDs/phosphorene nanostructure, Si/SiO2-phosphorene,
graphene-phosphorene materials are either predicted or
employed for better performance of solar cell [115–118].
Though some challenges regarding the stability of
phosphorene as well as an understanding of detailed
mechanistic insights, still remain to be resolved, the future
of phosphorene-based systems for photovoltaic applica-
tions indeed looks brighter for the development of a
sustainable efficient solar cell with long-term stability.
The formation of electron-hole pair upon shining light of

a particular wavelength corresponding to the band-gap of
semiconductor opens up an enormous opportunity for
photocatalytic transformations [119,120]. Whereas the

photogenerated electrons in the conduction band can be
used for reducing different species, the holes normally
accept the electrons from the reagent, resulting into
oxidation of the starting materials. Depending on the
redox potential of a reaction and the band-gap of
semiconductor material, a particular scheme can be
designed to afford various reaction products from simple
starting materials. In case of phosphorene, four classes of
reactions are thus far reported depending on the substrates
and the efficiency of the catalysts: hydrogen evolution,
carbon-di-oxide reduction, hydrogenation and removal of
pollutant [20].

Hþ þ e – ↕ ↓1=2H2 E0
redox ¼ – 0:41 V vs NHE (1)

CO2 þ e – ↕ ↓CO –
2 E0

redox ¼ – 1:90 V vs NHE (2)

CO2 þ 6Hþ þ 6e – ↕ ↓CH3OHþ H2O

E0
redox ¼ – 0:38 V vs NHE (3)

CO2 þ 8Hþ þ 8e – ↕ ↓CH4 þ 2H2O

E0
redox ¼ – 0:24 V vs NHE (4)

CO2 þ 2Hþ þ 2e – ↕ ↓COþ H2O

E0
redox ¼ – 0:53 V vs NHE (5)

Equations (1–5) are representative photo(electro) che-
mical reactions (reproduced with permission from the ref
[20], Copyright 2017 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim).
Since the overall water splitting (i.e., generation of

hydrogen and oxygen from water) require relatively large
energy, the photocatalytic generation of hydrogen from
water has long been considered as one of the sustainable
solutions for the current and imminent upcoming energy
crisis primarily because of high-energy capacity (143
MJ∙kg–1) of hydrogen and environmentally safe reaction
[121]. Though for such catalytic process, TiO2 (or a
combination of TiO2 with other nanomaterials) is probably
the most popular one, several challenges such band-gap
mismatching, inefficient utilization of total electromag-
netic spectrum, possibility of electron-hole recombination
etc. often limit the wider applications [122]. In this respect,
phosphorene showed promises as potential choices as
compared to other materials [123]. Because of its unique
wider band-gap position, it often allows better electron
reduction ability and also decreases the electron-hole
recombination [124,125]. Future works are still needed to
understand and correlate a better structure-activity relation-
ship but the progress seems promising.
One of the ways to control CO2 in the atmosphere is to

convert it to different fuels or value-added products [126].
The chemistry behind the conversion of CO2 to fuels
majorly involves the reduction of CO2. However, for

302 Front. Chem. Sci. Eng. 2019, 13(2): 296–309



practical purposes, the complex combinations of proton-
coupled-electron-transfer (PCET) reactions, as well as the
efficiency and selectivity of the employed catalysts govern
the final products of the reactions (Eqs. (1–5)) [127,128].
Semiconductor materials (such as TMDs, MXenes,
graphitic–C3N4) with specific band-gap energies have
been investigated theoretically and experimentally for
conversion of carbon-di-oxide into different fuel molecules
[129–131]. Because of comparable band minina of
phosphorene and graphitic-C3N4, the former (or its
precursor black/red phosphorous) is also expected to
catalyze these PCET reactions with high efficiency and
selectivity [132]. Recently, a combination of red phos-
phorous and BP demonstrated comparable activity than
that of cadmium sulfide quantum dots [133]. Though the
determination of active site and origin of catalysis are yet
to be conclusively confirmed, these studies show the
prospect of phosphorene materials as catalysts for such
transformations.
The generation and the fate of electron-hole pair along

with the choice of reaction, corresponding to the band-gap
of the photoactive materials dictate the overall photo-
catalytic performance. Similar to the reduction of CO2,
phosphorene can also be envisioned as a photocatalyst for
other reactions. Corroborating with that thought, several
theoretical studies have already been performed for the
hydrogenation (i.e., addition of hydrogen to unsaturated
bonds) of olefin [134,135]. These studies also shed light on
the effect of electron-deficient dopants like B, Al, etc. for
the generation of frustrated Lewis-pair as well as their
subsequent catalytic cycles [135]. These studies are yet to
be confirmed by experiments but a latest study on catalytic
hydrogenation of Ni-phosphorene has clearly shown the
path on which the future studies can be performed [136].
The photocatalytic materials have often been utilized for

effective degradation of toxic organic chemicals from the
environment and in that regard, TiO2 and other photoactive
materials have already been reported [137,138]. However,
most of the materials suffer from challenges such as partial
utilization of entire solar spectrum, recombination of
electron-hole pair etc. As a newer addition to that class,
phosphorene nanosheets have been explored as photo-
sensitizers with a high quantum yield for the effective
generation of singlet oxygen upon irradiation of UV-
visible light, leading to decomposition of 1,3-diphenyli-
sobenzofuran and methyl orange [139]. This particular
report along with previous reports opens up the opportu-
nity for the use of 2D semiconducting materials for
photodynamic therapy, which need to be explored for the
removal of toxic materials from the environment.
Phosphorene has also been explored as an electrocata-

lyst because of its conducive electrical conductivity, high
surface area, leading to better activity. Among the
electrocatalytic reactions, electrocatalytic activity of phos-
phorene and BP was explored for very important yet quite
challenging oxygen evolution reaction (OER) [140,141].

Presently, noble-metal-based nanomaterials are being used
as electrocatalysts for OER (or its reverse reaction, i.e.,
oxygen reduction reaction or ORR) and hence, efforts are
being focused to find a sustainable alternative for such
catalysts. In this case, phosphorene nanosheets or BP
(either as pure or as nanocomposite with other materials)
has been used to electrocatalyze the OER process and their
activity and stability often resemble the current state-of-
the-art catalysts. For instance, while Zhang and co-workers
investigated the activity and the stability of few layers of
phosphorene for OER, BP (or phosphorene or their doped
variants) nanocomposites such as BP on Ti foil, phosphor-
ene on graphene, etc. were studied for OER [141]. Though
the active sites and other mechanistic studies still remain
elusive, the current progress is clearly indicative of better
prospect.
Owing to the unique thermal and electrical properties of

phosphorene (especially the anisotropic behavior), phos-
phorene (or BP) emerged as a strong candidate for
thermoelectric applications where high electrical conduc-
tance but low thermal conductivity (i.e., high figure of
merit) is required [142]. BP nanoribbons exhibited high
Seebeck coefficient and the anisotropic behavior of BP can
be observed from the differences in Seebeck coefficients,
electrical and thermal conductivities of the BP in arm-chair
and zig-zag directions [143,144]. Theoretical and experi-
mental studies on phosphorene have also revealed that this
behavior of BP could also be extended in case of
phosphorene [144,145]. Additionally, concepts have
already been proposed to utilize these properties for the
development of the industrial (exhaust-gas-treatment,
[146]) and the household items (nanogenerator, [147])
and based on the preliminary reports, the future opportu-
nities of phosphorene being utilized in different industrial
and household sectors seem endless.

3 Conclusions and future directions

In this current review, a brief development of phosphorene
including their synthesis, characterization and properties
and the applications is presented. The past and ongoing
research efforts clearly suggest that the potential of
phosphorene for various applications is enormous
(Fig. 4). Despite knowing the existence of BP since 1914,
the prospect of the 2D variant of BP, i.e., phosphorene
actually started to resurface as a quest for finding an
alternative to existing 2D materials to eliminate or minimize
their associated challenges. The fundamental knowledge
regarding the preparation, characterization and applications
is still in its infancy andmore efforts are genuinely needed to
identify the challenges as well as the possible solutions.
Due to the advancements in several instrumental

techniques, the synthetic tools for the synthesis of
phosphorene seem to explode. However, in reality, most
of the procedures indeed lack detailed theoretical and
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experimental investigation about their fundamental pro-
cesses at the atomic level and without understanding them,
the breakthroughs in synthetic methods (especially at the
large scale) appear to be challenging. In addition to
synthesizing phosphorene and BP, post-synthetic modifi-
cations offer significant advantages to tune the properties
of the materials. However, this seemingly simple idea is
often found to be a daunting task because of the lack of
compatibility between the phosphorene and the attached
moieties and due to the stability of phosphorene in
different conditions. Hence, the development of such
post-synthetic process along with their fundamental
understanding and the stability of the phosphorene upon
exposure to different environments become imperative.
In terms of the characterization of properties of

phosphorene, the anisotropic nature of phosphorene
separates it from the other 2D materials. Though the
origin of anisotropy still remains controversial for some
properties, this directional behavior of phosphorene
encourages the researcher to utilize it for different
applications [13,118,148]. Though, morphology, layer
numbers, band-gap properties and thermal and electrical

properties of phosphorene are routinely being carried out,
several other properties such magnetism, non-linear optics,
biocompatibility etc. are still not explored primarily due to
lack of proper vision towards possible applications.
Despite the interest regarding the potential applications

of phosphorene, without the active participation from
different interdisciplinary branches of research, the
progress can be sluggish. Since, the stability of phosphor-
ene still remains a major concern, the long-term applica-
tions utilizing the semiconducting, catalytic, mechanical
properties of phosphorene have been limited. The fabrica-
tion of phosphorene on different substrates for the
development of devices is also restricted by the lack of
fundamental knowledge of fabrication techniques. Addi-
tionally, even for the current applications (e.g., photo and
electrocatalysis), the identification of the reaction pathway
as well as the interpretation of technical parameters often
remains dubious. Though the applications regarding the
materials’ aspect of phosphorene have been a part of active
investigations, the biological activity, toxicity and bio-
compatibility of phosphorene still remain relatively
unexplored.

Fig. 4 Schematic of diverse applications of phosphorene. Reproduced with permission from the ref. [20], Copyright 2017WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim
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The aforementioned challenges regarding synthesis,
characterization and applications of phosphorene some-
how restrict the utilization of its full potential. However,
given the responses from different research fields (based on
the number of research papers published) [13], it is evident
that the research community is actively putting its best
efforts to tackle such problems, as a result of which , an
overall sharper growth is expected in near future regarding
the preparation, characterization and applications of
phosphorene.
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