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Abstract  

The current and estimated energy demand and their potential sources of supply 

indicate a daunting future for humanity on the planet unless sustainable solutions are 

developed. The scarcity, high cost and the potential environmental and health concerns 

related to widely used noble-metals makes the situation even worse. Thus, active 

participation from scientific and industrial communities is essential to replace noble-

metal (or any metal) based processes with more sustainable alternatives. In that context, 

recent developments in heteroatom-doped (especially nitrogen) nanocarbons and their 

wide-ranging applications show promises towards substituting the processes, which 

normally utilize expensive, scarce and hazardous materials. Herein, a brief overview of 

nitrogen-doped nanocarbons (NNCs) is provided highlighting their significance and 

sustainable prospects.        

Keywords  

Nanocarbons, Metal-free approaches, Nitrogen-doped carbon, Supercapacitors, 

Electrocatalysis, Sustainable processes 
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Introduction 

 The current and anticipated future energy demands and associated environmental 

impacts surely pose imminent threats not only to mankind but also to every living 

organism and the environment on the planet.[1] The over-utilization of precious metals 

for various industrial processes along with their potential bio- and eco-toxicity is one of 

the major components of this concern. Thus, the proper utilization of natural resources 

and finding the sustainable alternatives to non-renewable sources undoubtedly requires 

the most attention.[2,3] In the quest of finding a green and sustainable alternative to the 

noble-metal-free (or metal-free) processes, a class of nanomaterial containing carbon 

nanostructures has emerged as a promising contender. The interest in this field can be 

attributed to the materials’ high abundance, relatively low-cost (compared to metals), 

easy accessibility and chemical diversity and finally size- and shape-dependent properties 

(owing to their nanodimensions).[4]  

 In general, the carbon-based-nanomaterials are primarily comprised of carbon-

backbones with hydrogen and other heteroatoms.[4] Based on the historical progress of 

this field, common organic supramolecular aggregates and polymers are excluded from 

this class due to their respective unique identities in the research community. The 

structures of these nanomaterials are composed of either sp2 or sp3 carbon networks 

where the remaining valencies of carbon are satisfied with hydrogen or heteroatoms (vide 

infra). While the connectivity and the degree of unsaturation dictate their electronic 

structures, geometries and other properties, the presence of heteroatoms contributes 

significantly to control such properties.  

 The carbon-based nanomaterials are normally classified based on their geometric 

dimensions, ranging from zero (0D) to three dimensions (3D). Though this classification 

seems a little skewed towards sp2 carbon-systems like graphene, graphite etc. the newly 

developed synthetic techniques have also started to offer more variants of these systems 

(such as sp3 carbon-systems etc.), leading to improved and innovative properties.[5] 

While the class of 0D mainly includes fullerene-based systems [6], the carbon nanotubes 

(CNTs) [7] are normally considered as 1D nanocarbons because of their unidirectional 
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propagation during synthesis, leading to directional properties. The most popular class of 

nanocarbons is probably 2D class because of the recent upsurge in graphene-based 

applications[8] in which the unique physico-chemical properties stem from the single 

layer of graphene-sheets. The 3D variants of graphene, graphite [9], encompassing 

multiple layers of graphene stacked together in the perpendicular direction to the 

graphene-plane, are classified as 3D nanocarbons. Though the properties of nanocarbons 

are normally governed by their dimension, the post-synthetic modifications and 

variability in synthetic precursors open up opportunities for further improvement. In this 

respect, the incorporation of the various heteroatoms (often termed as “dopants”) is 

garnering significant attention in recent years due to their ability to modulate the 

materials’ properties and consequently eventual applications.[10]  

Among the dopants that are included into nanocarbons, nitrogen and oxygen are 

the most common ones primarily because of the ease of synthetic procedures and high 

abundance of the precursors. Among these heteroatoms, nitrogen dopants have ben 

claimed to have the major impact towards improving the nanocarbon’s properties.[11] 

Within a short span of time, the field has witnessed a sharp growth as reported by a few 

sporadic reviews [11-14] documenting the specialized properties and applications of 

nitrogen-doped nanocarbons (NNCs), an updated coverage of NNCs appear timely. 

Herein, selected and important synthetic procedures, properties and the applications of N-

doped nanocarbons are presented, highlighting the present status, challenges and future 

opportunities (Figure 1A). 
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Figure 1. (A) An overview of the topics discussed in the manuscript. (B) and (C) Types of nitrogen atoms in nitrogen-

doped-nanocarbons (adopted from the ref. [14]). 

Present Status 

  Owing to the unique structural features and associated properties of sp2-based 

nanocarbons, it is more prevalent and widely studied as compared to other counterparts. 

Irrespective of the class, mainly three types of nitrogen atoms are found in NNCs [14] 

(Figure 1B, 1C): graphitic, pyridinic and pyrrolic. The major difference among these three 

types stems from the position of nitrogen in the carbon network/skeleton, the number of 

heterocyclic rings they form and the participation (or lack thereof) of their lone-pair of 

electrons into the carbon skeleton; these structural features directly modulate the physico-

chemical properties of such nanocarbons.  

The graphitic nitrogen atoms refer to those nitrogen atoms, which substitute the 

carbons in the graphene layer, connecting with three other carbon atoms in the skeleton. 

Depending on their locations (either on the edge or trapped inside the layer), they can 

further be classified as “valley” or “center” nitrogens. On the other hand, pyridinic and 

pyrrolic nitrogens represent the classes of nitrogen atoms which are parts of six and five-
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membered ring, respectively. In general, for pyridine, the ring aromaticity does not 

involve the lone-pair of electrons from the nitrogen whereas pyrrole ring utilizes lone pair 

of electrons from nitrogen to gain aromaticity. Having said that, however, for the 

heterogeneous system, such a concept is often be overshadowed by the overall stability of 

the system. Additionally, depending on the synthetic procedures, there are also chances 

of formation of aminic as well as N-oxides types of nitrogen atoms, which can have a 

significant impact on the overall charge distribution. Though most of the synthetic 

procedures allow incorporation of more than one type of nitrogen atoms into the system, 

the lack of fundamental mechanistic understanding of nitrogen incorporation still makes 

the prediction process relatively difficult. The same concept can also be extrapolated to 

relatively less-studied sp3 carbon-skeleton where more prevalent geometrical constraints 

lead to distortion in the structure, leading to noticeable changes in their electronic and 

chemical properties.  

Synthetic Strategies   

 As opposed to classical “top-down” and “bottom-up” classification systems, 

commonly used to describe the synthetic strategies for assembly of nanomaterials, the 

synthetic methods deployed to prepare N-doped nanocarbons can be broadly divided into 

two routes: 1) post-synthetic method and 2) in-situ process.  

As the name suggests, in “post-synthetic” method, nitrogen-free nanocarbons are 

mixed with nitrogen-containing precursors and the composite can be transformed into 

NNCs with the help of external energy sources (Figure 2). Though the high-temperature 

thermal treatment is normally used to carry out such transformations, recently alternating 

energy input system such as microwave (MAHA: Microwave-assisted Hydrothermal 

Treatment)[15], plasma and arc-discharge methods[16] etc. have also been reported. The 

pyrolysis temperature, gas-type and flow, the choice of precursors etc. are some of the 

variables that influence the type and the amount of overall doping. For example, Lai et al. 

reported that by changing the precursors and other experimental conditions, diverse types 

of nitrogen atoms could be obtained (Figure 2A).[17] Alternatively, nitrogen can be 

incorporated post-synthetically via the functionalization of nitrogenous entities onto 

precursor molecules, followed by pyrolysis.[18] This process allows relatively precise 
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grafting of the nitrogenous entity on the nanocarbon surfaces but often suffers from 

economic viability. Various non-nitrogenous carbons such as carbon nanotubes (CNTs) 

[19,20], activated carbon [21], graphene [22-24], graphene-oxide (GO) [25] and reduced 

graphene-oxide (RGO) [15,26] etc. and different nitrogen sources [11] such as ammonia, 

urea, polyaniline (PANI), polypyrrole (Ppy), dicyandiamide, ethylenediamine etc. have 

been used for the synthesis of NNCs. The structure of such ensuing nanocarbons tends to 

resemble more to the relatively stable non-nitrogenous nanocarbons whereas the 

incorporation (both amount and type) of nitrogen varies depending on reaction 

conditions.      
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Figure 2. Representative synthetic strategies for the preparation of NNCs. (A) The synthesis of N-doped graphene with 
different nitrogenous precursors (Reprinted with permission from ref. [17]. Copyright 2012 Royal Society of 
Chemistry. (B) The explanation of concurrent segregation technique for the preparation of N-doped graphene 
(Reprinted with permission from ref. [27]. Copyright 2011 Wiley-VCH Verlag GmbH & Co. KGaA). (C) An example 
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showing the synthesis of NNCs from MOF (Reprinted with permission from ref. [28]. Copyright 2015 American 
Chemical Society). 

 

The “in-situ” method on the other hand, primarily involves the carbonization of a 

nitrogenous carbon source.[19,29,30] In this list, the most common method for the 

synthesis of NNCs is Chemical Vapor Deposition (CVD) technique, in which the N-

containing precursors are injected into the chamber at vapor state at a high temperature 

and depending on the reaction conditions, the NNCs are deposited on a substrate (Figure 

2).[31] The temperature, pressure and other conditions of the chamber, the nature of 

gases, the decomposition behaviors of the precursors have significant impacts on the 

extent of nitrogen incorporation as well as on the types of nitrogens.  For an example, 

Zhang et al. reported a CVD technique describing a unique substrate-dependent synthesis 

of N-doped graphene (Figure 2B).[27] In addition to pyrolysis process, a pre-synthetic or 

post-synthetic chemical activation strategy, as well as soft and hard-template-based 

synthetic tactics can be employed to improve the properties namely interaction with 

substrates, surface area etc. One of the major advantages of this method lies in the 

selection of the precursors. Since, any nitrogen-containing species, which can form a 

network-structure upon pyrolysis, can potentially be used for the synthesis of N-doped 

nanocarbons, the list of the precursors includes some of the unconventional materials 

such as Metal-Organic-Frameworks (MOFs) (Figure 2C), [28] bio-derived N-rich 

nanocomposites, [32,33] N-rich polymeric nanomaterials [33] and ionic liquids, [34] 

among others. Though the correlation between the precursors and the types of nitrogen in 

the nanocarbon skeleton remains elusive, the development of newer CVD and other 

strategies, coupled with the vast pool of available precursors is expected to bring more 

insight into the process for the synthesis of NNCs with improved properties.    

It won’t be complete if the biomass-derived synthesis of the NNCs is not included 

in the recent trends for the synthesis of NNCs.[35-39] Strategically, in most cases, it still 

requires pyrolysis of the precursors but the bio-derived unique choice of precursors have 

made this particular topic unique especially from the view-point of sustainable sources. 

In a very short period of time, this field has shown great promises, as highlighted by 

Luque and co-workers.[40] Now the continued research efforts are focused on 
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understanding the intrinsic reaction behavior of the specific biomass precursors and it is 

expected to achieve different NNCs as well as different composite materials with novel 

applications.      

Characterization of Materials’ Properties   

 The salient properties of N-doped nanocarbons, has provided the impetus and 

motivation to pursue the research in this area with varied emerging applications. The 

growth of sophisticated characterization techniques has helped immensely to recognize 

the uniqueness of the system. The structural and morphological features of nanocarbons 

can be visualized using different microscopic techniques and in this respect, Scanning 

Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) have been 

widely utilized (Figure 3A, 3B).[41] The Selected Area Electron Diffraction (SAED) and 

Energy-Dispersive X-ray (EDX) Spectroscopy are also employed as useful techniques to 

glean information about the level of crystallinity and the concentration of dopants present 

in a particular nanocarbon sample, respectively.  Except for a few cases, the crystallinity 

of the samples remains questionable and hence both Small-angle and Large-angle X-Ray 

Diffraction (XRD) methods are normally used to reconfirm the lattice planes. 

Additionally, several new developments in Atomic Force Microscopy (AFM) and 

Scanning Tunneling Microscopy (STM) along with elemental mapping also provide 

precise information about the numbers of layers and dopant’s position, respectively 

(Figure 3C, 3D).[42] The bond-connectivity and the chemical nature of the nitrogen atoms 

are considered to be two important characteristics and these information can be obtained 

from X-ray Photoelectron Spectroscopy (XPS) to establish the structure-activity 

relationship. The atomic percentages of carbon and other dopants can be found from the 

XPS survey spectrum whereas the high-resolution deconvoluted spectra of individual 

elements reveal different bond-connectivity. For instance, the high-resolution 

deconvoluted N1s XPS spectrum shows the graphitic, pyrrolic and pyridinic nitrogen 

atoms at 401.5, 400.0, 398.0 eV respectively (Figure 3E).[12] In addition, the degree of 

unsaturation can also be found from C1s XPS spectrum after deconvolution, thus 

revealing the complicated network connectivity between carbon and nitrogen (Figure 

3F)[43]. Raman Spectroscopy is yet another important characterization tool routinely 

used to calculate ID/IG ratio (ID = Raman intensity related to the defect site, IG = Raman 
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intensity related to the graphitic site) to assess the presence of dopants and the 

concomitant absence of sp2 carbon networks (defect sites) (Figure 3G).[44] Often, the 

synthetic strategies for NCCs are aimed to fabricate product with the high surface area 

and in that case the surface area of the nanocarbons, their pore-size and pore-volumes can 

be calculated using N2 adsorption-desorption experiments. The specialized knowledge 

about the thermal and the electrical conductivity, the optical band-gap and other 

properties are also routinely measured to understand a better structure-activity 

relationship.[45] Recently, the biomedical applications of such N-derived nanocarbons 

call for a different set of toxicological studies and several research groups are actively 

looking into environmental and health safety impacts of such NNCs.[46] 

(B) (A) (C) (D) 

(F) (E) (G) 

 

Figure 3. Various characterization techniques used to determine the structural features of NNCs. (A) SEM and (B) 
TEM images of N-doped CNTs (Reprinted with permission from ref. [41]. Copyright 2012 Elsevier Ltd.). (C) STM 
image and (D) DFT simulated image of N-doped single-layer of graphene (Reprinted with permission from ref [42]. 
Copyright 2018 American Association for the Advancement of Science). High-resolution and deconvoluted XPS 
spectra of CCNs (E) N1s  (Reprinted with permission from ref. [12]. Copyright 2012 Elsevier Ltd and (F) C1s 
(Reprinted with permission from ref. [43]. Copyright 2011 American Chemical Society). (G) Raman spectrum of N-
doped graphene  (Reprinted with permission from ref.[44].  Copyright 2011 American Chemical Society). 

 

Applications 

The major reason for the emergence of N-doped nanocarbons is their unique 

properties, which allow them to be explored for diverse applications. The amount and the 
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nature of the nitrogen dopants can change the electronic and optical properties of these 

nanocarbons than their non-nitrogenous counterparts. The more electronegative nitrogen 

atoms (as compared to their adjacent carbons) impart significant distortions in their 

electronic band structures (by changing the distribution of π –electrons across the carbon 

networks) and influence the electrical and optical properties of the system. The difference 

in electronegativity between nitrogen and carbon, the intrinsic basicity of the nitrogen 

atoms (as exemplified by the accessibility of the lone-pair of electrons of some the 

nitrogen atoms) and the high surface area of NNCs contributes significantly to allow the 

favorable interactions between the substrates and the nanocarbons, culminating into 

improved activity of the later. While the high-temperature synthetic processes impart 

thermal stability and chemical-resistance to the nanocarbons, the dimension-specific 

property of N-doped nanocarbons also plays a significant role in designing nanomaterials 

for various emerging electronic and electrochemical applications. 

(B) (A) 

(D) (C) 

 

Figure 4. A glimpse of diverse applications of NNCs. (A) A cyclic voltammetry curve of nitrogen-doped carbon-
coated thermally exfoliated graphene for the evaluation of supercapacitive performance in alkaline medium (Reprinted 
with permission from ref. [47]. Copyright 2015 Elsevier Ltd). (B) A comparison of ORR activity of graphene, N-doped 
graphene and Pt/C (Reprinted with permission from ref. [48]. Copyright 2010 American Chemical Society). (C) The 
plot of current density vs. potential to evaluate the performance of N-doped rGO in dye-sensitized solar cell (Reprinted 
with permission from ref.[49] .Copyright 2013 Royal Society of Chemistry). (D) N-doped rGO catalyzed esterification 
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of fatty acid using long chain alcohol (Reprinted with permission from ref [50]. Copyright 2016 Royal Society of 
Chemistry). 

 

 The development of N-doped nanocarbons mainly started to overcome some of 

the challenges related to non-nitrogenous variants of nanotubes and graphene-based 

nanomaterials.[10] Encouraged by the initial promises, this class of nanomaterials has 

been employed in almost every conceivable application where graphene and nanotubes 

have been used.[14] In some cases, this simple and subtle modification in an extended 

carbon network resulted into comparable (or sometimes better) activity than that of state-

of-the-art precious-metal-based nanosystems. Because of the unique electronic properties 

of NNCs, their applications primarily include the electrical or electrochemical processes. 

Their potential as supercapacitor (Figure 4A) [16,47,51-58], anchors for Li-polysulfide in 

Li-S battery [59-62], electrode materials for Li-ion batteries [63-68], electrical storage 

devices [14,69-72], fuel cell catalysts [73] have indeed shown promises for the 

development of non-metal-based nanosystems. Recent studies have revealed the superior 

activity of NNCs (mostly supported by non-noble metal-based co-catalysts) in a variety 

of electrocatalytic reactions [74-89] such as Hydrogen Evolution Reaction (HER), 

Oxygen Evolution Reaction (OER), Oxygen Reduction Reaction (ORR) (Figure 4B) [48] 

etc. These nanocarbons have also been employed as sensors for the detection of several 

gases and other entities with high efficiency.[90,91] 

 Other than the electrochemical applications, several variants of N-doped-

nanocarbons have been synthesized for environmental [92,93] and photocatalytic 

applications (Figure 4C).[49,94-98] For example, carbon-nitride and/or its derivatives can 

be effectively used as photocatalytic materials for environmental applications whereas the 

melamine-formaldehyde aerogel has been deployed as an absorbent for water vapor.[99] 

In another instance, Jain and co-workers reported a carbocatalytic esterification of fatty 

acid with long-chain alcohol using nitrogen-doped reduced graphene oxide as catalysts 

(Figure 4D) [50]. These nanomaterials have been infrequently documented for magnetic 

and biomedical applications [100] but significant efforts are still needed to gauge a clear 

outcome on their true potential. 
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 Despite having immense potential for a range of applications, the fundamental 

knowledge between the activity and the different structural components remains a major 

hurdle to finally replace the non-sustainable choices and genuine efforts are being 

devoted to confront such issues. 

Conclusions and Future Directions 

 It is undeniable that NNCs show noteworthy promises for the future development 

of metal-free nanocomposites. However, despite the sharp growth of the field within such 

a short span of time, it still requires significant efforts from the scientific community to 

overcome the some of the current challenges.  

The synthetic strategies of this class of nanomaterials are primarily focused on the 

thermal carbonization of the precursor molecules. The limited knowledge about the 

mechanism of formation of the nanocarbons from its precursors and the concerns about 

the distribution of the different types of nitrogen in the carbon-skeleton confine the full 

potential of the synthetic processes. Additionally, the environmental and health impacts 

of such synthetic strategies have been overlooked till recently and from a sustainability 

aspect, these require special attention to ascertain of the overall greenness of high 

temperature synthetic procedures (preferably using more efficient alternative energy 

sources).    

The knowledge about the origin of the activity of NNCs still is at the age of its 

infancy, mainly due to lack of background information. The significant advancement in 

instrumentation and computational methods is expected to build a better structure-

property relationship, from which newer nanocarbons with novel structural features, 

properties (such as magnetism etc.) and their ideal applications can be predicted. 

Additionally, a favorable, compatible combination of other heteroatoms with nitrogen is 

other means to improve the present status of the applications but it demands more 

thorough and inter-disciplinary efforts from the research community.      

The encouraging news is that both government and private sectors have identified 

the value of abundant and renewable carbon resources at an early stage and have 
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earnestly started to work in overcoming teething hurdles. Hopefully, these problems will 

be addressed successfully and the replacement of the industrial processes requiring 

precious metals by metal-free, sustainable, and greener processes comprising NNCs or 

other combination of hetero-atom-doped nanocarbons will be seen in near future.    
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