
Optik - International Journal for Light and Electron Optics 248 (2021) 168197

Available online 24 October 2021
0030-4026/© 2021 Elsevier GmbH. All rights reserved.

Single Image Haze Removal Based on transmission map estimation 
using Encoder-Decoder based deep learning architecture 

Sivaji Satrasupalli, Ebenezer Daniel *, Sitaramanjaneya Reddy Guntur 
Department of Electronics and Communication Engineering, Vignan’s Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, 
522213, India   

A R T I C L E  I N F O   

Keywords: 
Transmission map 
Airlight 
Dropout layer 
Deep learning 
Encoder-Decoder 

A B S T R A C T   

Haze removal is an essential requirement in autonomous vehicle applications for identifying 
different objects on the road. Most of the available techniques are based on different constraints/ 
priors. The important parameters required for recovering the ground truth from hazy image are 
transmission map and air light. In this paper, we proposed a learning-based Encoder-Decoder 
deep learning architecture for transmission map estimation. Based on the assumption that at least 
twenty percent of the outdoor image includes with sky region and hence airlight is calculated as 
average of the twenty percent brightest pixels of the image. These two parameters namely 
transmission map and airlight were applied in atmospheric scattering model for ground truth 
image recovery. In Encoder-Decoder architecture, Max pooling layer, dropout layer was used for 
feature learning and efficient generalization respectively. The proposed architecture was trained 
on different datasets like NYU Depth data set, FRIDA and RESIDE Dataset for better generalization 
on unseen data. Experimental results shows that the proposed method has shown better perfor
mance compared to the existing state of the art methods.   

1. Introduction 

Haze forms due to refraction of light from the suspended particles like smoke, dust and hence it will limit the visibility. Haze 
generally results in reduced contrast and as haze concentration increases red, green and blue channel values will be close to air light 
[1]. Autonomous vehicles could not differentiate object in such scenarios and photography is also difficult. Hence for these reasons 
single image dehazing is required for video processing and photography. Removing haze is an ill posed problem because of unknown 
depth at every pixel [2]. Several techniques were proposed to reduce the haze, which are either based on many images/Single images. 
For example, many images were considered under different degrees of polarization [3]. In [4], multiple images were taken under 
different weather conditions and applied different constrains and [5] used depth map for recovering the ground truth. It is not always 
practical to have multiple images, so single image dehazing was popular recently. 

Image enhancement methods are also applied to restore the ground truth from hazy images [6], based on histogram equalization, 
[7] based on contrast enhancement, [8] used weighted least squares for contrast enhancement [9], applied modified dark channel 
saturation prior and [10] based on saturation. In [11] an assumption that a clear image will have high contrast compared to hazy 
image, and contrast enhancement method applied based on Markov Random Field (MRF) [12], applied Independent Component 
Analysis (ICA) but very slow and not suitable for densely hazy images. K. He et al., in [13] Presented Dark Channel Prior based on the 
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statistical observation that the most of the clear images has at least one channel with very low pixel value and Depth of every pixel is 
calculated based in lowest pixel in the hazy image and recovered ground truth using atmospheric scattering model, but it is not shown 
better results for sky region. Later, many researchers have contributed by modifying the DCP (Dark Channel Prior). Complex and time 
consuming soft matting in [14] was replaced by median filtering [15], median of mean filtering [16], guided filter [17]. In [18] D. 
Berman et al. proposed haze lines based on the assumption that a clear image can be represented with few hundred colors, forms tight 
clusters turns into lines as haze concentration increases [19]. proposed color attenuation prior based on the assumption that value and 
saturation difference fairly represents the depth map of the image. Recently, learning based approaches were introduced by many 
authors. Convolutional Neural Networks have shown better performance in many high level tasks like object detection [20], classi
fication [21] and segmentation [22], also being used for low level tasks. While priors based methods used statistical features, Learning 
based approaches using structural features. In [23] Cai, proposed a dehazenet for transmission map estimation [24], used All in One 
Deahze Net [25], used wavelet hybrid model for local and global featues. 

Global atmospheric light and transmission map are two important parameters for removing the haze. In this paper we proposed an 
eight-layer Encoder-Decoder based Architecture for transmission map estimation and airlight was estimated based on top 20% 
brightest pixel average values, scene radiance was restored based on atmospheric scattering model. Experiments have shown that the 
proposed method is better than the existing state of the art methods. Rest of the paper organized as follows. in section II, atmospheric 
scattering model and related works were discussed, in section III, block diagram for reconstruction is presented, experimental results 
were discussed in section IV and conclusion given in section V. 

2. Related works 

2.1. Atmospheric scattering model 

Many image dehazing methods using single image have been proposed in the literature. Some of the best solutions reviewed in this 
section. Although different methods proposed for single image dehazing, all are based on same function called image dehazing model. 

Haze formation mathematical model was first proposed by McCartney [26] and it was further improved by Narasimhan and Nayar 
[27]. Haze formation mathematically represented as 

I(x, y) = J(x, y) ∗ t(x, y)+α(1 − t(x, y)) (1) 

Where I(x, y) is the input hazy image, J(x, y) is the recovered image after haze removal, t(x, y) is medium transmission factor, (x, y)
is special coordinates of the image and Fig. 1 gives the illustration of haze formation. From Eq. (1), Scene radiance J(x, y) can be re 
recovered after estimating the medium transmission factor t(x, y) and magnitude of global atmospheric light α. 

The transmission factor of the medium t(x, y) can be represented as, 

t(x, y) = e− β.d(x,y) (2) 

Where d(x, y) is the depth of the scene radiance pixel at special location (x, y) and β is the scattering coefficient of the atmosphere. 
Based on Eq. (2), we can notice that as depth of the object tends to infinity, results in medium transmission tends to zero and Eq. (1) 
becomes, 

I(x, y) = α (3) 

Practically objects cannot be located at infinite distance, so α can be estimated based on top 20% pixels average based on the 
assumption that sky region generally takes around 20–25% of the image and which is farthest in the image. 

2.2. Dark Channel Prior 

Dark Channel Prior (DCP) was presented by K He. et al. in [13] based on the statistical observation that most of the outdoor haze 
free images will have at least one-color channel very close to zero called as dark/minimum channel. Minimum channel, considered to 

Fig. 1. Atmospheric Scattering [23].  
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be very low vale and it can be calculated in a local window with size r X r is: 

D(x, y) = minx,y ∈ Ω(z)
r (minIc (x,y)

c∈(r,g,b) )
(4) 

Where Ic is input hazy image with three channels namely red, green, and blue. Ωz
r is the local window of size r X r centered at z.as 

haze concentration increases, D(x, y) decreases proportionally and hence transmission value decreases. Transmission map approxi
mately calculated using Eq. (5). 

t(x, y) = 1 − D(x, y) (5)  

2.3. Color attenuation prior 

Zhu et al. in [19] introduced a color attenuation prior based on observation that the saturation decreases and value increases as 
haze concentration rises. Hence the saturation and value difference fairly represents the depth map. 

D(x, y)∝(IV(x, y) − Is(x, y)) (6)  

Where IV(x, y) value of input hazy image and Is(x, y)) is saturation of the image. 

2.4. Dehazenet 

B. Cai et al. in [23] presented a DehazeNet for estimating the transmission map. DehazeNet was designed to get the haze related 
features like Dark channel Prior using a filter with center value as − 1, maximum contrast using round filter, and color attenuation prior 
by transforming RGB image to HSV image. Maxpool layer was added to remove the local estimation error and BReLU (Bilateral 
Rectified Linear Unit) was used as activation function to limit the transmission map value to be within specified range. The model was 
trained on over 1,00,000 patches of size 16 × 16. Mean Square Error was the basis for learning the network parameters. 

3. Proposed method 

The proposed model is aimed to recover the haze free image by estimating the two important parameters called airlight and 
transmission maps. Here, Encoder-Decoder based deep learning architecture is used for transmission map estimation. Also, we chosen 
fast-guided filter to smoothen the transmission map by preserving the edge information. The airlight was estimated based on the 
assumption that sky is the farthest object in any image, generally accounts 20% area of the image, specifically in autonomous vehicle 
applications. Hence, we used an average of brightest 20% pixels was considered as airlight. The block diagram of proposed model is 
given in Fig. 2. 

3.1. Network model 

Transmission map estimation is very important parameter in recovering the haze free image. In this paper, we introduced a 
Encoder-Decoder based deep learning architecture. The neural network architecture is given in Fig. 3, which includes two layer 
encoder, two layer decoder and fully connected layer. The size of the hazy input image applied to the network is resized to 
256 × 256×3. Input image is convolved with 60 kernals of size 3 × 3 and produces an output of size 256 × 256 × 60. The output of 

Fig. 2. Block diagram of proposed method for single image dehazing.  

S. Satrasupalli et al.                                                                                                                                                                                                   



Optik 248 (2021) 168197

4

the first layer is applied to down sampling layer by replacing a 2 × 2 matrix with its maximum values, results in output size of 
128 × 128 × 60 and the next layer produces 64 × 64 × 30. Further upscaling was used in decoder block to obtain an output with 
dimensions 1 × 256 × 256. ReLU activation function was used for all the layers except output layer. BReLU (Bilateral Rectified Linear 
Unit) was used as activation function to get values of transmission map within specified range in the output layer. 

3.2. Loss function 

Generally big datasets are required for training the model. We have used the data from three different datasets namely NYU2 [22], 
FRIDA [28] and Outdoor Training Set (OTS) of RESIDE [29] for training the network. Including Outdoor Training Set (OTS) from 
RESIDE dataset, around one lakh samples were used for training the network. As the training data taken from different resources, 
network is less prone to overfitting and resulted in better generalization. The proposed model is for estimating the transmission map, 
but datasets are having depth map references, so transmission map was approximated with the Eq. (7). 

t(x, y) = 1 − d(x, y) (7) 

The network weights were initialized using Gaussian random variables and drop out layer [30] is used for regularization of the 
network for avoiding overfitting. The dataset is divided into training and testing sets with a ratio of 70:30. Mean Square Error between 
the actual output and true value was the loss function and gradient descent algorithm with Adam optimizer is used to update the 
weights with learning rate 0.001. 

L(Θ) =
1
N

∑N

i=1
‖f (Ii;Θ) − ti‖

2 (8) 

The network parameters namely weight matrix and bias will be updated based on simple loss function called Mean Square Error 
(MSE). In Eq. (8), Ii is applied Hazy input, ti is ground truth transmission map and Θ is network parameter. 

3.3. Reconstruction 

After estimating the two important parameters called transmission map and airlight, dehazed image can be calculated from the 
following equation by reorganizing Eq. (1). 

J(x, y) =
I(x, y) + α(t(x, y) − 1)

t(x, y)
(9) 

In Eq. (9), transmission map t(x, y) is limited in the range (0.10,0.95) to avoid the color saturation problem. Fast guided filter [33] is 
applied to the output of Encoder-Decoder architecture to get the transmission map. Eqs. (10)–(12) are governing equations for 
applying fast guided filter for smoothening the transmission map by preserving the edge information. 

t(x, y) = akEi + bk (10)  

ak =

1
|ω|

∑

i∈ωk

(Eipi − μkpk)

σ2
k + ϵ

(11)  

bk = pk − akμk (12) 

Fig. 3. CNN architecture for transmission map estimation.  
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Where ak, bk are averages of a and b respectively. Ei is the output of the CNN architecture, μk and σk are the average and variance of 
the input Ei in the local window called k. In Eq. (9), α is called airlight & it can be estimated with the following Eq. (13). 

α =

∑n

i=0
Ei

n
(13)  

Where n is considered as 20% of the total size of the image, which is 256 × 256 and Ei is the output of the Encoder-Decoder ar
chitecture called transmission map. 

Table 1 
Average SSIM and PSNR values on validation images of NYU Depth dataset.  

Parameter CAP [19] Cai [23] DCP [13] Proposed 

PSNR  19.42  19.14  18.51  19.76 
SSIM  0.8424  0.7615  0.8174  0.8911  

Table 2 
Average SSIM and PSNR values on middleburry dataset.  

Parameter CAP [19] Cai [23] DCP [13] Proposed 

PSNR  21.49  21.09  19.2  21.7 
SSIM  0.8861  0.8749  0.8581  0.9012  

Table 3 
Average MSE between dehazed and ground truth of Middlebury stereo database.  

Parameter CAP [19] Cai [23] DCP [13] Proposed 

MSE  371.50  421.26  647.24  356.84  

Table 4 
Execution time (sec) taken for 256 × 256 × 3 image.  

Parameter CAP [19] Cai [23] DCP [13] Proposed 

Time (sec)  0.61  1.41  10.2  1.1  

Fig. 4. Results on synthetic images: (a) Hazy input image (b) CAP [19] (c) Cai [23] (d) DCP [13] and (e) proposed.  
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4. Experimental results 

4.1. Objective analysis 

We have compared the proposed approach with state of the art methods: color attenuation prior, dehazenet, dark channel prior. As 
we have both hazy and ground truth images, enabled us to validate the proposed method based on Structural similarity Index (SSIM) 
[31], Peak Signal to Noise Ratio (PSNR) [31] and Mean Square Error(MSE). Table 1, Table 2 and Table 3 shows the performance 
comparison of the proposed model with the existing methods on validation images of NYU Depth dataset and Middleburry dataset 
[32]. The proposed solution is based on encoder-decoder based neural network architecture. Our model is trained on around one lakh 
images of size 256 × 256×3 with different types of data sets helped us to achieve better performance. The following Eq. (14) [31], (15) 
and (16) [31] were used to calculate the performance metrics. 

PSNR(ŷ, y) = 10 log⁡
(

2552

MSE(ŷ, y)

)

(14)  

MSE(ŷ, y) =
1

MN
∑M

i=1

∑N

j=1

(
ŷi,j − yi,j

)2 (15)  

Fig. 5. Results on real world images: (a) Hazy input image (b) CAP [19] (c) Cai [23] (d) DCP [13] and (e) proposed.  
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SSIM(ŷ, y) =
(2μŷ μy + C1)(2σŷy + C2)

(μ2
ŷ
+ μ2

y + C1)(σ2
ŷ
+ σ2

y + C2)
(16)  

4.2. Execution time 

The proposed method was trained in google colabs and downloaded the model, used for the reconstruction of the image in jupyter 
notebook of anaconda environment. Table 4 shows the comparison of the execution time taken by different methods. Our method took 
approximately 1.1 s for input image of size 256 × 256 × 3 and it is better than DCP & dehazenet but not as fast as Color attenuation 
prior. All the algorithms have been executed in MATLAB (2019b) with the same computer (LENOVO Laptop with i5-3210M processor 
@ 2.50 GHz and 8 GB RAM) but the proposed method excuted in jupyter notebook, however hardware is same. 

4.3. Subjective analysis 

We have extensively tested the proposed method on both synthetic and natural images. Figs. 4 and 5 shows the comparison of the 
proposed method with the state-of-the-art existing methods namely color attenuation prior, dehazenet and the dark channel prior. It is 
noted that the results of the proposed method have shown better contrast in heavy hazy regions but partly suffers from color shifting in 
the sky region. As the proposed method is intended for object detection in autonomous vehicle applications, detection of the objects in 
the foreground of the image is important compared to sky region. 

5. Conclusion 

In this paper, we had proposed an Encoder-Decoder based deep learning architecture for estimating the transmission map and 
refined using fast guided filter. The proposed architecture was trained on approximately a lakh image with 100 epochs, batch size 500 
and mean square error as loss function. After 30 epochs mean square value was hovering about 1.56e-2 and shows no improvement 
further and BreLU activation function in the output layer. Moreover, we had proposed a new method for calculating the airlight based 
on assumption that at least 20% area of the image covers sky region in the outdoor images, hence considered the average of top 20% 
pixel values as airlight. These two parameters were used in atmospheric scattering model and reconstructed the dehazed image and 
shown better performance in terms of SSIM, PSNR and MSE. We had considered constant airlight value, but it can be learned from the 
network for further improvement in performance. 
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