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Adhatoda vasica (also called Vasaka) is a traditional medicinal herb used

traditionally for the relief of cough, asthma, nasal congestion, bronchial

inflammation, upper respiratory infections, bleeding disorders, skin diseases,

leprosy, tuberculosis, diabetes, allergic conditions, rheumatism, tumor, and

many more diseases. The present study aims to investigate the biological

activities of vasicine, a potent alkaloid from A. vasica with di�erent biological/

pharmacological assays and in silico techniques. Vasicine showed antimicrobial

activity as evidenced fromthe colony-forming unit assay. It showed antioxidant

activity in ABTS scavenging assay (IC50 = 11.5µg/ml), ferric reducing power

assay (IC50 = 15µg/ml), DPPH radical scavenging assay (IC50 = 18.2µg/ml),

hydroxyl radical scavenging assay (IC50 = 22µg/ml), and hydrogen peroxide

assay (IC50 = 27.8µg/ml). It also showed anti-inflammatory activity in proteinase

inhibitory assay (IC50 = 76µg/ml), BSA method (IC50 = 51.7µg/ml), egg

albumin method (IC50 = 53.2µg/ml), and lipooxygenase inhibition assay (IC50

= 76µg/ml). Vasicine showed antidiabetic activity in α-amylase inhibition assay

(IC50 = 47.6µg/ml), α-glucosidase inhibition assay (IC50 = 49.68µg/ml), and

non-enzymatic glycosylation of hemoglobin assay. It showed antiviral activity

against HIV-protease (IC50 = 38.5µg/ml). Vasicine also showed anticancer activity

against lung cancer cells (IC50 = 46.5µg/ml) and human fibroblast cells (IC50 =

82.5µg/ml). In silico studies revealed that similar to the native ligands, vasicine

also showed a low binding energy, i.e., good binding a�nity for the active binding

sites and interacted with α-amylase (-6.7 kcal/mol), α-glucosidase (-7.6 kcal/mol),

cyclooxygenase (-7.4 kcal/mol), epidermal growth factor receptor (-6.4 kcal/mol),

lipooxygenase (-6.9 kcal/mol), and HIV-protease (-6.4 kcal/mol). The present

study ascertains the potential of vasicine as a bioactive compound isolated from

A. vasica having therapeutic usefulness in many human diseases.

KEYWORDS

Adhatoda vasica, in silico, in vitro, pharmacological activities, vasicine

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2023.1161471
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2023.1161471&domain=pdf&date_stamp=2023-03-17
mailto:rsmrpal@gmail.com
mailto:s.aldosarimu.edu.sa
https://doi.org/10.3389/fnut.2023.1161471
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2023.1161471/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Rudrapal et al. 10.3389/fnut.2023.1161471

1. Introduction

Adhatoda vasica belongs to Acanthaceae family and known
with many common names like as Vasaka, Baker or Malabar
Nut (1). An evergreen plant with an average height of 1.0 to
2.5m with a bitter taste and unpleasant smell (2). Many studies
reported the use of leaves and flowers for curingasthma, cough,
cold, expectorant, and antispasmodic. In vivo study on rats showed
to prevent oxidative damage due to carbon tetrachloride (3). The
phenolic compounds found in A.Vasica reported to scavenges the
free radicals and displays highest antioxidant activity (4). These
medical properties make Adhatoda vasica of immense interest to
study its phytochemicals and active compounds for drug discovery.

In the present day and age, herbal medicines have become
more popular in the treatment of many diseases due to a popular
notion that herbal medicines are safe with zero to very few side
(adverse) effects (5, 6). A. vasica (Figure 1) is also called Adhatodai

or Vasaka or Arusha (7). It is a recognized herbal remedy in
Ayurvedic and Unani systems of medicine (6). It has been used in
many traditional remedies for the management of various human
diseases (6). The major chemical compounds of A. vasicabelong to
the quinozolinealkaloidal group. These quinozoline alkaloids are
vasicine, and a bronchodilator alkaloid, vasicinone (7).

Vasicine (Figure 2) is also called peganine (8). The
bronchodilatory activity of vasicine is well reported. Bromhexine
and ambroxol are the derivatives of vasicine, which are used as
expectorants and mucolytics (9). Vasicine has been characterized
by infrared spectroscopy, mass spectroscopy, nuclear magnetic
resonance, and melting point. Identification of vasicine was

FIGURE 1

Flower and leaves of Adhatodavasica.

FIGURE 2

Chemical structure of vasicine.

donethroughspectral data comparison with those data that had
been reported (10, 11).

People in ancient times used plant extracts as such as traditional
herbal remedies but they were unable to find the individual
compounds that are responsible for the biological effects (12).
In this research, a double extraction system was used for the
extraction and purification of vasicine. The primary extraction
was carried out with a highly polar solvent (Soxhlet extraction)
followed by a secondary extraction (column chromatography),
which increases the specificity of the extraction process. Although
column chromatography is generally used for purification, we
have exploited its principle to optimize the solvent system.
After extraction, we analyze the in vitro antibacterial activity,
anti-inflammatory activity, anti-diabetic activity, and anti-oxidant
activities. In silico techniques were used to study the interaction of
vasicine with different target proteins used in the bioassay model.

2. Materials and methods

2.1. Collection of plant materials and
processing

The fresh leaves of A. vasica were collected from the areas
of Nagalapuram, Thoothukudi district, Tamil Nadu. Collected
leaves were specifically separate out from other plant parts.
Collected sample were washed with water to remove unwanted
particles and dust. Leaves collected form A. vasica plants were
authenticated by Dr. Srinivasan, Siddha Doctor, Government
hospital, Nagalapuram, Thoothukudi, Tamil Nadu. Leaves of A.
vasica were dehydrated and the size of the plant materials
was reduced to moderate coarse powder. The dried plant
materials were subjected to loss on drying test. The initial
weight of leaves material was recorded. After drying, the
leaves were weighed. This procedure was repeated until a
constant weight was obtained. The powdered samples were sieved
using sieving machine with mesh size 75µ to achieve sample
powder in even size. Small sized particle can release more
extract so the 75µ mesh sieved powder was preferred for the
extraction process.

2.2. Extraction

The uniformly powdered samples were subjected to double
extraction using Soxhlet extraction and column chromatographic
extraction process to increase the quantity as well as to attain
purity of extracted components from the plant materials of A.

vasica. For the extraction process, solvents were selected based
on their polarity (hexane, toluene, ethyl acetate, acetone, and
methanol). In this method, 4 g of powdered substance was taken
and 600ml of solvent was used. The extraction process was
carried out at the boiling point the solvent used for about 6–
8 h and 6 cycles as preliminary extraction. All the chemical and
solvents used were of analytical grade and were used as received
without any further purification and were obtained from Sigma-
Aldrich.
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2.3. Qualitative confirmation

The qualitative analysis of the samples was done to verify the
presence of alkaloids in the extract. Alkaloid tests, wavelength scan
analysis and TLC analysis were performed for all eluted samples.
Fourier-transform infrared spectroscopy (FT-TR) analysis was used
to identify the type of functional groups present in vasicine for
different fractions of the extract. Mayer’s test andWagner’s test were
carried out to qualitatively assess the presence of alkaloids in the
extract (vasicine) (13–15).

2.4. UV spectroscopic analysis

The different fractions were collected from column
chromatography (13) with different solvents and were analyzed
with Hitachi, Spectrophotometer U-2800 (United Kingdom). The
wavelength scan was carried out between 200 and 500 nm. The
peaks obtained were compared with reported reference values to
verify the presence of vasicine (281 nm) in the extract.

2.5. Thin layer chromatography

Approximately 10 µl of the sample was spotted on the
completely dried TLC plate (7.5 × 2.5 cm, 0.5mm thickness, silica
gel G as stationary phase) and was placed in a beaker (developing
chamber) previously saturated with the mobile phase (chloroform:
methanol; 9:1 ratio). After the solvent raised to 3/4th of the plate,
the plates were taken out from the developing chamber and was
visualizedin a UV chamber at 254 nm. On spraying the plate with
Dragendroff’s reagent, a prominent orange spot of vasicine was
observed. The retention factor (Rf) was also measured (16).

2.6. Fourier-transform infrared
spectroscopic (FT-IR) analysis

Solid sample was preferred for the FT-IR analysis. The fractions
obtained from column chromatography were analyzed using FT-IR
(400 MHz Burker Advance spectrometer) to confirm the presence
of the vasicine based on the functional groups present in it. The
functional groups present in vasicine are O-H, C-H, C=N, C-N,
C=C, and C-O groups. 10 µl/ 10mg of sample was analyzed with
the FT-IR instrument. The percentage transmittance (60–100%) vs.
wave number (400–4,000 cm−1) was plotted and the peaks were
viewed with software OPUS operator.

2.7. In vitro studies

2.7.1. Antibacterial activity
Antibacterial assay was carried outby colony forming units

(CFU) assay using anaerobic and facultative oral bacteria (17). Two
different bacterial strains (Escherichia coli and Bacillus badius)were
collected from NCCS, Pune. Pure cultures were sub cultured in
Mueller-Hinton (MH) broth suggested by Bauer (18). The broth

were kept in incubator at 37◦C for 24 h. Two strains of Bacteria
were grown in MH broth to an OD600nm of 0.5. 2 µLaliquot
of the bacteria and 5ml of fresh MH broth (contains various
concentration of vasicine) was added (19). The log10 reduction in
CFU/ml was determined.

2.7.2. Anti-oxidant activity
The anti-oxidant activity of vasicine was evaluated with ABTS

[2,2
′

-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] activity
(20), ferric reducing power (FRAP) assay, DPPH radical scavenging
activity, hydroxyl radical scavenging activity (21–24), and hydrogen
peroxide assay (25).

2.7.3. Anti-inflammatory activity
The anti-inflammatory activity of vasicine was investigated

with lipooxygenase (LOX) inhibition assay (26), bovine serum
albumin (BSA) method (27), egg albumin method (28, 29), and
protein inhibitory action (30).

2.7.4. Antidiabetic activity
The antidiabetic activity of vasicine was evaluated with in vitro

enzymatic assays using α-amylase and α-glucosidase (31–36). The
non-enzymatic glycosylation of hemoglobin assay was also carried
out (37).

2.7.5. HIV protease inhibition activity
The antiviral activity of vasicine against HIV protease was

investigated using the HIV protease inhibition assay (38).

2.7.6. Anticancer activity
The anticancer activity of vasicine for the potential treatment

of lung carcinoma (A545) was evaluated in a multi-step process.
Cytotoxicity of vasicine was investigated by cytotoxicity evaluation
(human fibroblast cell line, C0135C) (39, 40), direct microscopic
observation (41), and MTT assay (42).

2.8. In silico studies

MarvinSketch software was used to obtain the chemical
structure of vasicine in “SDF” file format. Energy minimization of
vasicine and conversion into “pdbqt” file format was carried out
(43–45). The structure of α-amylase (PDB ID:4W93), α-glycosidase
(PDB ID:3A4A), cyclooxygenase (PDB ID:5F1A), lipoxygenase
(PDB ID:6N2W), HIV protease (PDB ID: 5KR0), and epidermal
growth factor receptor (PDB ID:1IVO) were retrieved from the
database (https://www.rcsb.org/) (46). Pre-processing of proteins
for removal of side chains, identification of the active site, removal
of heteroatoms, removal of water and addition of hydrogen atoms
was carried out (43, 47–49). The coordinates of the active binding
sites are as follows: α-amylase (x = −12.30, y = 4.25, z = −22.43),
α-glycosidase (x = 21.31, y = −7.82, z = 23.30), cyclooxygenase
(x = 41.74, y = 24.19, z = 239.73), epidermal growth factor
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TABLE 1 Qualitative alkaloid tests by Mayer’s and Wagner’s reagents for

vasicine.

Sl. No. Solvent Fractions Mayer’s
test

Wagner’s
test

1 Hexane 1 - -

2 Toluene 1 - -

2 - -

3 - -

4 - +

5 - +

3 Ethyl acetate 1 + ++

2 ++ ++

3 ++ ++

4 Acetone 1 ++ +

2 + +

3 + +

5 Methanol 1 ++ ++

2 + +

3 + +

+, Present; ++, distinctively present; -, absent. Ethyl acetate fraction, acetone fraction, and
methanol fraction showed positive results for alkaloid tests. However, the ethyl acetate fraction
showed a more distinctive positive result. This was indicative that the alkaloid content in the
ethyl acetate fraction was higher than the other fractions.

receptor (x = 108.02, y = 66.26, z = 45.17), HIV protease
(x= −16.70, y = 12.41, z = −20.16), and lipoxygenase (x =

42.34, y = 20.37, z = 36.35). Molecular docking was performed
with the AutoDockVina to investigate the binding affinity of
vasicine toward each target proteins. Discovery Studio Visualizer
2020 was used for the visualization of protein-ligand interactions
(43, 50–53). The drug-likeness of vasicine was studied using Swiss
ADME (54–57).

3. Results and discussion

3.1. Extraction and qualitative analysis

Five different solvent systems were used in the secondary
extraction and different fractions were obtained from the column
extraction process. Qualitative analyses such as wavelength
analysis, TLC analysis, Mayer’s test (58), and Wagner’s test (59)
were included to find the best solvent system for the extraction of
vasicine. The phytochemical analysis results of vasicine are shown
in Table 1.

3.2. In vitro pharmacological evaluation

3.2.1. Antimicrobial activity
Based on the colony-forming unit assay technique, the

antibacterial activity of vasicine was determined. The number of

FIGURE 3

Anti-microbial Activity of vasicine for E. coli and Bacillus badius.

colonies reduced as the concentration of purified vasicine increased
(Figure 3).

3.2.2. Antioxidant activity
3.2.2.1. ABTS scavenging activity

Ascorbic acid was used in various concentrations as the
standard drug to assess the scavenging property of vasicine. ABTS
scavenging activity measures the relative capacity of antioxidant to
scavenge the ABTS+ radicals of vasicine ranged from 28 to 75%
(Figure 4) while that of the ascorbic acid ranged between 12 and
81% at a concentration of 100 mg/ml. The IC50 value of vasicine
was calculated to be 11.5 µg/ml.

3.2.2.2. Ferric reducing antioxidant power assay

Free radicals are generated due to the biochemical redox
reactions occurring in human body as a part of normal cell
metabolism. The oxidative stress is produced due to production
and scavenging of free radicals, can cause many diseases such
as cancer, arthritis, antheroclerosis, etc. In this study, vasicine
was expressed in terms of FeSO4.7H2O equivalent. A correlation
between different concentrations and the ferric reducing ability
of vasicine was determined between the range of 10–100µg/ml
(Figure 4). The standard showed 82% inhibition at 100µg/ml,
while vasicine showed 62% of inhibition at 100µg/ml. A similar
study by Srinivasarao et al. (60) found increase in serum alkaline
phosphatase in Swiss albino mice treated with vasicine, shows it a
potential antioxidant. The IC50 value of vasicine was calculated to
be 15 µg/ml.

3.2.2.3. DPPH radical scavenging activity

At a concentration of 100µg/ml, vasicine and the standard
(ascorbic acid) showed 81 and 96% inhibition, respectively
(Figure 4). At 100µg/ml. The IC50 value of vasicine was calculated
to be 18.2 µg/ml.

3.2.2.4. Hydroxyl radical scavenging assay

Vasicine showed scavenging activity of about 12–69%
inhibition while ascorbic acid showed 15–86% inhibition at
100µg/ml (Figure 4). The IC50 value of vasicine was reported to be
22 µg/ml.
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FIGURE 4

(A) Percentage inhibition and (B) IC50 value of vasicine in the antioxidant assay. ABTS, 2, 2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)

scavenging Activity; FRAP, Ferric Reducing Antioxidant Power Assay; DPPH, 1,1 Diphenyl-2-picrylhydrazyl Radical Scavenging Activity; HRA, Hydroxyl

Radical Scavenging Assay; HPA, Hydrogen Peroxide Assay.

FIGURE 5

(A) Percentage inhibition and (B) IC50 value of vasicine in proteinase inhibitory activity (PIA), lipooxygenase inhibition assay (LOX), BSA using method

(BSA), egg albumin method (EA).

3.2.2.5. Hydrogen peroxide assay

10–100 µg of vasicine exhibited 9–59% inhibitory activity
against hydrogen peroxide. The scavenging action against hydrogen
peroxide was induced by the same concentration of ascorbic acid
(Figure 4). The scavenging activity on hydrogen peroxide at 100 µg
of vasicine was lesser than ascorbic acid. The IC50 value of vasicine
was calculated to be 27.8 µg/ml.

3.2.3. Anti-inflammatory assay
3.2.3.1. Proteinase inhibitory activity

The standard aspirin showed 79% inhibition (Figure 5). The
activity was compared with diclofenac sodium (standard drug). The
IC50 value of vasicine was 76 µg/ml.

3.2.3.2. BSA method

A maximum percentage of inhibition of 82% was observed
from the extracted vasicine (Figure 5). At 100µg/ml, diclofenac
sodium showed 42% inhibition. The effect of diclofenac sodium
was found to be lesser when compared with that of the extracted
vasicine. The IC50 value of vasicine was 51.7µg/ml in comparison
to the standard.

3.2.3.3. Egg albumin method

This method was used to assess the anti-inflammatory effect of
vasicine under in vitro conditions. Throughout the concentration
range from 10 to 100 µg/ ml, the test extract exhibited inhibition
of albumin denaturation (Figure 5). Vasicine and the standard drug
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FIGURE 6

(A) Percentage inhibition and (B) IC50 Value of vasicine. AAI, α-amylase inhibition assay; AGI, α-glucosidase enzyme; NEGH, non-enzymatic

glycosylation of hemoglobin assay.

(diclofenac sodium) showed inhibition at 81 and 89%, respectively.
The IC50 value of vasicine was 53.2 µg/ml.

3.2.3.4. Lipooxygenase inhibition assay

The IC50 value of vasicine against lipooxygenase was reported
to be 76µg/ml. The maximum percentage inhibition of 83% was
observed with the extracted vasicine (Figure 5). Diclofenac sodium
(standard) showed the inhibition of 82% at a concentration of
100 µg/ml.

3.2.4. Antidiabetic activity
3.2.4.1. α-amylase inhibition assay

α-amylase inhibitory assay revealed the potential of vasicine for
the treatment of diabetes (Figure 6). The IC50 value of vasicine was
calculated to be 47.6 µg/ml.

3.2.4.2. α-glucosidase inhibition assay

In the present study, acarbose (positive control) inhibited α-
glucosidase activity with an IC50 value of 49.68µg/ml (Figure 6).

3.2.4.3. Non-enzymatic glycosylation of hemoglobin assay

Our study showed an increase in glycosylation upon incubation
of hemoglobin with glucose for 72 h (Figure 6).

3.2.5. HIV-protease inhibition
A. vasicaaqueous extract showed 99% inhibition of pepsin. In

this study, 89% inhibition of HIV-protease enzyme by vasicine was
observed (Figure 7). The IC50 value of the vasicine was 38.5 µg /ml
for HIV-protease.

FIGURE 7

HIV-protease inhibitory activity of vasicine and the standard drug.

3.2.6. Anti-cancer activity
3.2.6.1. Cytotoxicity assay by direct microscopic

observationand MTT method

Vasicine showed good anticancer activity against the lung
cancer cell line (Figure 8A). As the concentration increases, there is
an increase in cell growth inhibition. However, only 30.12% growth
inhibition was observed at 100µg/ml. The IC50 value of vasicine
was <100µg/ml (Figure 8B). The results showed that vasicine had
a very moderate anticancer activity.

3.2.6.2. Cytotoxicity evaluation

Vasicine has a cytotoxic effect against fibroblast cell lines
(Figure 9A). The IC50 of vasicine against fibroblast cell line was also
higher than the IC50 value on lung cancer cells (Figure 9B).
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FIGURE 8

(A) Direct microscopic view on the anticancer activity of vasicine on lung cancer cell lines at various concentrations (6.25, 12.5, 25, 50, 100µg/ml) in

comparison with the control value. (B) Cell viability (%) in MTT assay (IC50 = 46.5µg/ml).

FIGURE 9

(A) Direct microscopic view of cytotoxic activity of vasicine at various concentrations (6.25, 12.5, 25, 50, 100µg/ml) in comparison with the control

value. (B) Cell viability (%) in MTT assay on Human Fibroblast Cell line (IC50 Value = 82.5µg/ml).

3.2.7. In silico studies
The binding affinity of vasicine toward the active site of

each protein is given in Table 2. For comparative analysis, the
binding affinity of the native ligand of each target protein is also
provided in Table 2. Vasicine (-6.7 kcal/mol) showed a slightly
lower binding affinity toward α-amylase than the native ligand (-
8.7 kcal/mol). In case of α-glucosidase, vasicine (-7.6 kcal/mol)
showed superior binding affinity than the native ligand (-6.1
kcal/mol). Vasicine (-7.4 kcal/mol) also exhibiteda better binding
affinity for cyclooxygenase than the native ligand (-6.0 kcal/mol).
Vasicine (-6.4 kcal/mol) showed a slightly better binding affinity
for the epidermal growth factor and receptor than the native
ligand (-6.3 kcal/mol). At a binding energy value of−6.4 kcal/mol,
vasicine and the native ligand showed the same binding affinity
toward HIV protease. Vasicine (-6.9 kcal/mol) showed a slightly

lower binding affinity toward lipooxygenase than the native ligand
(-7.4 kcal/mol).

The 2D ligand interactions of vasicine with the target proteins
can be visualized in Figure 10. Vasicine formed conventional
hydrogen bonds [ASP197 (bond length = 2.05Å); ALA198
(bond length = 2.83Å); GLU233 (bond length = 2.31Å)] and
hydrophobic interactions [LYS200 (bond length = 4.68Å); HIS201
(bond length = 4.57Å); ILE235 (bond length = 3.59Å)] with
various amino acids at the active site of α-amylase (Figure 10A).
Vasicine formed conventional hydrogen bonds [GLU277 (bond
length = 2.24Å); ASP352 (bond length = 2.52Å)] and carbon-
hydrogen bond [ASP69 (bond length = 3.69Å)] with different
residues at the active site of α-glucosidase (Figure 10B). Vasicine
formed conventional hydrogen bonds [ASN382 (bond length
= 2.95Å); TYR385 (bond length = 2.42Å)] and hydrophobic
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TABLE 2 Binding a�nity of vasicine in comparison to the native ligand of

di�erent proteins.

Protein Ligand Binding
energy

(kcal/mol)

α-amylase Vasicine −6.7

Native ligand
(3L9)

−8.7

α-glucosidase Vasicine −7.6

Native ligand
(GLC)

−6.1

Cyclooxygenase Vasicine −7.4

Native ligand
(SAL)

−6.0

Epidermal growth factor and receptor Vasicine −6.4

Native ligand
(NAG)

−6.3

HIV protease Vasicine −6.4

Native ligand
(478)

−6.4

Lipooxygenase Vasicine −6.9

Native ligand
(30Z)

−7.4

interaction [ALA202 (bond length = 4.71Å)] with different
amino acids at the active site of cyclooxygenase (Figure 10C).
Vasicine formed carbon-hydrogen bonds [SER291 (bond lengths=
3.40Å, 3.66Å); TYR292 (bond length = 3.58Å)] and hydrophobic
interaction [ARG310 (bond length = 5.32Å)] with different
residues at the active site of epidermal growth factor and
receptor (Figure 10D). Vasicine formed conventional hydrogen
bond [ILE47 (bond length = 2.53Å)], hydrophobic interactions
[ILE47 (bond length = 3.84Å); ALA28 (bond length = 5.04Å)],
and carbon-hydrogen bond [GLY48, (bond length = 3.77Å)] with
different residues at the active site of HIV protease (Figure 10E).
Vasicine formed conventional hydrogen bonds [GLU614 (bond
lengths = 1.85Å, 2.13Å); LEU615 (bond length = 3.06Å)]
and hydrophobic interactions [ALA672 (bond length = 4.14Å);
ILE673 (bond length = 5.20Å)] with various amino acids at
the active site of lipooxygenase (Figure 10F). Drug-likeness study
was carried out with the SwissADME tool. Vasicine followed
all the rules and filters of Lipinski’s rule of five, Ghose filter,
Veber filter, and Egan filter. It showed one violation against
Muegge filter as the molecular weight of vasicine was lesser
than 200.

The study against E. coli and Bacillus badius confirms
the antibacterial activity of purified vasicine. A comparative
antioxidant study of 30 different plants extracts using ABTS+
radical scavenging assay. Radical scavenging activities are very
important due to the deleterious role of free radicals in food and in
biological systems. The result of study showed significant reduction
in concentration of ABTS+ due to scavenging property of vasicine,
which supports our study results with vasicine. Antioxidant activity
reflects that vasicine inhibited ABTS (61–64). The activity increases
with the increase in the concentration/ dose of the compound. In

FRAP assay, the percentage inhibition increased with the increasing
concentration of vasicine.With an increase in the concentrations of
vasicine, an increase in the DPPH free radical scavenging activity
of vasicine was observed. Researchers Ali et al. (65) investigated
investigation of methanolic extract of A. vasica L. leaves by GC-MS
and identified many bioactive constituents. A significant reduction
in free radicals against DPPH was reported, which revealed the
antioxidant potential of A. vasica leaves. Further, the scavenging
action of vasicine on hydroxyl radical and H2O2 was observed
to an appreciable extent and the inhibitory activity was increased
with an increase in the concentration of vasicine. Denaturation
of proteins is well-documented in inflammation (66). Vasicine
was found to be effective in inhibiting heat-induced albumin
denaturation. Inhibition of proteinase activity, BSA denaturation,
egg albumin denaturation and lipooxygenase activity proved
the anti-inflammatory activity of vasicine. Different studies on
various plant extracts highlighted the role of vasicine to control
hyperglycemia (67). Because of the inhibition of α-amylase and
α-glucosidase vasicine could be used as a backup treatment for
type-2 diabetes (68). As indicated by an increasing hemoglobin
concentration in non-enzymatic glycosylation of hemoglobin
assay, it can be observed that vasicine (in comparison to the
standard drug) substantially inhibits hemoglobin glycosylation.
The antidiabetic activity of vasicine has been reported for first
time with this approach. The purified form of vasicine showed
higher inhibition of HIV-protease. The present study confirmed
that vasicine is an efficient inhibitor of HIV-protease. A. vasica
was traditionally used to treat lung cancers via oral treatment. In
the present study, a microscopic view of the MTT assay inferred
that the cells were detached from the substance and they form a
group in themedium. Vasicine exhibited cytotoxic effect against the
lung cancer cell line. More than 50% inhibition of cell growth was
observed. The cytotoxic effect was also observed against fibroblast
cell lines. From this microscopic view of the MTT assay, inferred
that the cells were connected to the substance and they are cannot
form a group in the medium at a lower concentration. The
binding energy values obtained from the molecular docking studies
revealed that vasicine has the affinity to bind to the active binding
sites of all the target proteins. Drug-likeness was satisfactory
for vasicine. Drug-likeness parameters such as Lipinski’s rule of
five, Ghose filter, Veber filter, and Egan filter were within the
acceptable limit.

4. Conclusion

The study reports that vasicine isolated from A. vasica leaves is
a potent bioactive compound with a potential for the treatment of
microbial infection, oxidative stress, inflammation, diabetes, viral
infections, and cancer investigated by various in vitro studies. In
silico studies reveals that vasicine have the inhibitory properties
against HIV-protease, α-amylase, α-glucosidase, cyclooxygenase,
lipooxygenase and epidermal growth factor receptor. The present
study finally confirms the potential of vasicine as a bioactive
compound isolated from A. vasica having therapeutic usefulness in
many human diseases. The study further validates the traditional
importance ofA. vasica leaves in themanagement of various human
ailments through an array of in vitro and in silico studies.
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FIGURE 10

2D ligand interactions of vasicine with the di�erent amino acid residues at the active binding sites of (A) α-amylase, (B) α-glucosidase, (C)

cyclooxygenase, (D) epidermal growth factor and receptor, (E) HIV protease, and (F) lipooxygenase.
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