
ORIGINAL ARTICLE

An artificial neural network approach to investigate surface
roughness and vibration of workpiece in boring of AISI1040 steels

K. Venkata Rao1 & K. P. Vidhu2
& T. Anup Kumar3 & N. Narayana Rao3 &

P. B. G. S. N. Murthy3 & M. Balaji4

Received: 22 January 2014 /Accepted: 19 July 2015 /Published online: 2 August 2015
# Springer-Verlag London 2015

Abstract In metal cutting, tool failure and surface roughness
are the important aspects that affect product quality and pro-
duction cost, and these are affected mainly by vibration of
workpiece. Current techniques do not have a proper method
to measure vibration of a rotating workpiece so as to use it as a
parameter to replace a cutting tool at an appropriate time. The
purpose of the present work is therefore to use of laser
Doppler vibrometer (LDV) to measure the vibration of work-
piece without interfering the machining. Subsequent to
obtaining the workpiece vibration data, artificial neural net-
work (ANN) method was adopted to predict surface rough-
ness and root mean square (RMS) velocity of workpiece vi-
bration. According to Taguchi design of experiments, 18 ex-
periments were prepared with two levels of nose radius and
three levels of cutting speed and feed rate. Experiments were
conducted on CNC lathe to obtain data of surface roughness
and RMS of workpiece vibration velocity in boring of AISI
1040. A multilayer feedforward ANN model was developed
and trained with the experimental data using back propagation
algorithm. Further, the ANN was used to predict surface
roughness and RMS velocity of workpiece vibration. The pre-
dicted values were compared with the collected experimental

data and percentage error was computed. Less percentage of
error was found between the experimental and predicted
values.
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1 Introduction

Boring process is a difficult operation when compared with
external turning process, and many variables affect the surface
roughness. In boring process, tool vibration is the main factor
that affects the tool life and surface finish. In boring opera-
tions, the length of boring bar is kept long, resulting in vibra-
tions leading to tool failure, poor surface finish and chatter.
Prasad et.al [1] stated that the texture of machined surface
provides reliable information regarding the tool wear because
tool wear affects the surface roughness dramatically.
Machining error is one of the factors that is to be given atten-
tion to obtain good quality of work. Error in machining is
wrong selection of cutting parameters that affect dimensional
accuracy and surface quality. Chun and Tae [2] studied the
effect of deflection of cutting tool, tool wear, depth of cut
and thermal effects and machine tool errors on machining
process. They found that deflection of tool and depth of cut
are significant parameters affecting the surface quality and
dimensional accuracy.

Chatter vibrations at high cutting speed can be measured
accurately by laser Doppler vibrometer (LDV). Venkatarao
et al. [3] and Balla et al. [4] also used LDV to observe vibra-
tion of workpiece and used a high-speed fast Fourier trans-
form (FFT) preprocessor for generating features from online
AOE signals to develop a database for appropriate decisions.
The LDV is being used to observe high-frequency vibrations
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during machining process. In this present work, a LDV was
used to observe vibration of workpiece and FFT was used to
process the acousto-optic emission (AOE) signals. Length-
diameter ratio (L/D) of boring bar is one of the important
factors causing tool vibration. In the present work, the L/D
ratio was taken as 3 in order to minimize vibrations of tool and
workpiece [3].

Surface quality is one of the important characteristics to
estimate functional quality and life of a machined product.
Good surface quality is essential for manufacturers to improve
functional and technical quality of any product. Quintana et al.
[5] stated that the surface roughness is influenced by various
factors like cutting parameters, cutting tool characteristics,
workpiece properties and cutting phenomena. Julie and
Joseph [6] conducted experiments using Taguchi design to
optimize surface quality. In the Taguchi design, they used
cutting parameters like feed rate, spindle speed, depth of cut
and tool type. In the present study, the Taguchi design is made
with cutting speed, feed rate and nose radius.

According to Chang [7], the surface roughness and tool
wear are strongly affected by the vibration amplitude and fre-
quency. Improper tool geometry and the nose radius will pro-
duce more vibrations than the depth of cut. Two different nose
radii were taken in the present work to evaluate effects of
vibrations on tool life and surface roughness. Venkatarao
et al. [3] mentioned in their work that two types of vibrations
may occur in machining, such as forced vibration and self-

excited vibration. Forced vibration is associated with bad gear
drives, unbalanced machine tool components, misalignment,
motors and pumps etc. Self-excited vibration occurs due to
chatter which is caused by the interaction of the chip removal
process and the structure of the machine tool and results in
disturbances in the cutting zone. Chatter always indicates de-
fects in the self-excited vibration. Junyun Chen, Qingliang
Zhao [8] stated that vibration between tool and workpiece is
more credible to estimate surface roughness. They have de-
veloped prediction models using vibration signals to predict
surface roughness. Zahia Hessainia et al. [9] have studied
effect of tool vibration along with cutting speed, depth of cut
and feed rate on surface roughness. They have used response
surface methodology to find out and optimum cutting param-
eters for minimum surface roughness with less tool vibration.
In the present work, effects of vibration signals on workpiece
vibration and surface quality were studied.

Tool condition monitoring (TCM) is an important charac-
teristic in the automated manufacturing industries to assess
ability of cutting tools for high production rates and good
quality. Proper tool condition monitoring reduces tooling cost,
and it helps in the reduction of product cost. Various authors
reported different methods for online assessment of tool con-
dition, such as process monitoring based on manipulation of
sensor measurements like acoustic emission, cutting forces,
vibration, temperature, stress-strain, vision and main motor
current etc. to determine the state of the process. Estimation
of tool wear is required for good quality of product and higher
productivity. New tool is to be replaced when it loses its

Table 2 Tool geometry
of DNMG150608 and
DNMG150604

Cutting edge length 15.5 mm

Cutting point angle 55°

Thickness 6.35 mm

Hole smallest dia 5.16 mm

Side clearance 0°

Fig. 2 Tool inserts

Fig. 1 Workpieces

Table 1 Chemical
composition of
AISI1040

Elements Percentage

Carbon 0.37–0.44 %

Sulphur 0.05 % max

Manganese 0.6–0.9 %

Phosphorus 0.04 % max

Iron Balance
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cutting ability. Otherwise, it leads to reduced dimensional ac-
curacy and additional costs. Sudhansu Ranjan Das et al. [10]
stated that flank wear is affected by cutting parameters like
cutting speed, feed rate and depth of cut. They have studied
the effect of tool wear on the surface roughness and concluded
that excessive wear on the tool gives poor product quality.
Prasad et al. [4] stated that accurate detection of tool condition
is one of the most important issues for replacing a new tool in
time. ANN can monitor tool wear, chatter vibration and chip
break during turning for real-time fault detection [11].

Artificial neural networks (ANNs) are also called as neural
nets, artificial neural system, parallel distributed processing
system and connectionist system. The ANNs are used to pre-
dict surface quality, tool wear, vibration of tool, tool life and
cutting forces etc. [12]. Bozdemir and Aykut [13] stated that
ANNs and expert systems are two main branches in artificial
intelligence. Ramakotaiah et al. [14] used the ANN to predict
cutting forces, surface roughness, and critical chatter locations
in inward turning process. In the present paper, surface rough-
ness and workpiece vibrations are predicted with the ANN.

Kishan et al. [15] explained the construction of neural net-
work; the network is referred to as a directed graph that has a
set of nodes (vertices) and set of connections (edges/links/
arcs) between nodes. Each node contributes some kind of
function like simple computation, and each connection trans-
fers information or signal between nodes. Each connection
between two nodes is labeled with a number called as connec-
tion strength or weight. The weight represents to what extent
the signal is to be amplified or diminished by the connection.

The network with single node or fewer nodes cannot solve
all the problems, and the networks which are constructed with
large number of nodes are used to solve complex problems
[12]. Kishan et al. [15] stated that the back propagation is a
supervised learning process and it has more importance in the
area of ANN and this is used in various applications like
classification, prediction or forecasting, function and ap-
proximation. Marek et al. [16] developed appropriate
control strategy with the help of neural networks to pre-
dict surface roughness and tool wear. Experimental data
collected from tests were used as input parameters into
neural network to identify the sensitivity among cutting
conditions, tool wear monitoring parameters and surface
roughness.

Fig. 3 Experimental setup for
boring

Table 3 Design of experiment (orthogonal array)

Trial no. N R (mm) Speed (m/min) Feed (mm/rev)

1 0.4 170 0.10

2 0.4 170 0.13

3 0.4 170 0.16

4 0.4 190 0.10

5 0.4 190 0.13

6 0.4 190 0.16

7 0.4 210 0.10

8 0.4 210 0.13

9 0.4 210 0.16

10 0.8 170 0.10

11 0.8 170 0.13

12 0.8 170 0.16

13 0.8 190 0.10

14 0.8 190 0.13

15 0.8 190 0.16

16 0.8 210 0.10

17 0.8 210 0.13

18 0.8 210 0.16
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Hsieh et al. [17] have used back propagation algorithm to
train the network for tool wear monitoring based on the spin-
dle vibration. Marimuthu and Chandrasekaran [18] used multi
layered feedforward ANN to predict the surface roughness
and tool wear during turning process of stainless steels.
Palanisamy et al. [19] and Kalidas et al. [20] used feedforward
back propagation ANN along with regression analysis for a
proposed design of experiments to predict tool wear, and the
predicted values were found within the trained range. Amir
Mahyar et al. [21] used ANN to study the role of cutting
factors on the prediction of tool life in milling process at var-
ious cutting conditions, and they found good correlation be-
tween the estimated and experimental values.

Pai et al. [22] used the ANN to estimate or classify certain
wear parameters, using continuous acquisition of signals from
multi-sensor systems. They proposed a new constructive
learning algorithm named Growing Cell Structures that has
been used for tool wear estimation in face milling operations,
thereby monitoring the condition of the tool. Ramesh et al.
[23] expressed that the cantilever shape of boring bar induces
chatter vibrations and it leads to an increase in temperature
and wear on tool. They predicted temperature and tool wear
accurately using ANN model. Asilturk [11] has used the neu-
ral networks and multiple regressions for the prediction of
surface roughness in machining of hardened AISI 1040 steel.
They concluded that the neural network models can predict
the machining characteristics better than regression analysis.

In the present study, a neural network was used to predict
surface roughness and root mean square of vibration velocity
of workpiece, when tool fails, i.e. flank wear reaches to
0.6 mm [ISO 3685:1993]. The network is constructed with
four layers including input, output and hidden layers.
Cutting speed, feed rate, volume of metal removed, hardness
of workpiece and nose radius are taken as input neurons, and
output neurons are surface roughness and root mean square of
vibration velocity of workpiece.

2 Workpiece material and tool inserts

In the present work, experiments were conducted on AISI
1040 steel and its chemical composition is shown in the
Table 1. It is hardenable by heat treatment, quenching and
tempering to develop tensile strength. It is widely used in
industrial applications. The material is provided in a raw state
from steel industries for manufacturing of crankshafts, cou-
plings and cold-headed parts [4, 11, 24, 25]. The workpieces
used in the experiment are shown in Fig. 1.

Physical vapour deposition (PVD)-coated tungsten carbide
tool inserts were used in this experiment with two nose radii of
0.8 mm (DNMG150608) and 0.4 mm (DNMG150604). The
insert geometry is shown in Fig. 2 and corresponding param-
eters in Table 2.

A sharp cutting tool is expected to give more cutting ability
for a long duration of time in an effective and smooth manner.
There are two types of wears that occur on cutting tool due to
loss of material inmetal cutting [3]. According to International
Standards Organization (ISO 3685:1993), tool life criteria are
considered only with the leading edge groove. For uneven
wear, the maximum flank wear or wear land width (VBmax)
should be less than 0.6 mm.

3 Design of experiments and experimentation

A specially designed orthogonal array of Taguchi (Table 3) is
used to investigate the effects of the machining parameters
through the small number of experiments, and it takes less

Fig. 5 Flank wear

Fig. 4 Machine vision system
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time for the experimental investigations. The design of exper-
iments is shown with three columns representing two levels of
nose radius and three levels of cutting speed and feed.

The experiments were conducted on CNC lathe DX200
model. The metal used in this experiment is AISI1040 with
a length of 90 mm, outer diameter of 100 mm and inner di-
ameter of 56 mm.

The following sequential procedure was used to carry out
the experiment under dry condition. The experiments were
conducted according to design of experiments (orthogonal
array of L18) as shown in Table 3.

1. Each test was started with a fresh cutting edge with one
test condition (trial) and machining was stopped at the end
of each pass. After each pass, the depth of cut was in-
creased by 0.2 mm (fixed depth of cut was given in each
pass) until the tool failed.

2. Vibration signals from the rotating workpiece were mea-
sured in the machining process using LDV and the setup
of experiment is shown in Fig. 3.

3. After each pass, the tool insert was removed and its flank
wear was measured with machine vision system which is
shown in Fig. 4. Flank wear on the tool inserts is shown in
Fig. 5.

4. After each pass, the workpiece was also removed and its
surface roughness and its hardness were measured.

5. Steps 1 to 4 were continued until the tool failed, and
beyond that, 2 or 3 passes were performed on the work-
piece to observe the behaviour of tool wear.

6. A new workpiece and new tool insert were loaded to the
machine, and the above steps were followed with a new
working condition (trial).

7. In each trial, surface roughness and RMS of workpiece
vibration velocity were identified when the tool failed
based on flank wear (VB). Experimental data for trial 1
was shown in Table 4. At pass 7, the flank wear just
crossed 0.6107 mm (ISO 3685:1993) and it indicated tool
failure and it was shown with green colour.

The above procedure was followed for all the trials, and in
each trial, the cutting parameters were changed as per design
of experiments. Eight to ten passes were conducted in each
trial for a new tool. After each pass, the workpiece and tool
were removed to measure surface roughness of workpiece and
flank wear on the tool. Workpiece vibrations were measured
with LDVonline while the machining is in progress.

Behaviour of surface roughness and RMS of workpiece
vibration velocity for 18 trials was shown in Fig. 6. As said
in the procedure, 0.2 mm depth of cut was given in each pass.
It was observed from the figure that surface roughness and
root mean square of workpiece vibration velocity are in-
creased in the next passes. RMS of workpiece vibration ve-
locity was observed above 1.00 mm/s for the trials 1, 2, 3, 11,
12 and 13.

4 Results and discussion

In this study, a neural network is used to predict surface rough-
ness and root mean square of vibration velocity of workpiece
when tool fails, i.e. flank wear reaches 0.6 mm [ISO

Fig. 6 Surface roughness and RMS of workpiece vibration velocity for 18 trials

Table 4 Experimental data for trial 1

Pass Ra (μm) Rms (mm/s) VB (mm) Vol (mm3) Hardness HRB

1 1.23 1.1140 0.1759 1721.55 95.25

2 1.60 1.0780 0.2147 3463.20 95.50

3 1.78 1.0400 0.2946 5202.18 95.50

4 2.00 1.0530 0.3214 6946.92 95.75

5 2.45 1.1554 0.3846 8697.42 96.00

6 3.10 1.1820 0.4857 10,453.68 96.25

7 3.54 1.2170 0.6107 12,215.70 96.50

8 6.20 1.4870 0.6874 13,983.48 96.75

Int J Adv Manuf Technol (2016) 83:919–927 923



3685:1993]. Experimental results of surface roughness (Ra)
and RMS of workpiece vibration velocity for VB=0.6 mm are
given in Table 5 for all the trials.

A feedforward four-layered back propagation neural net-
work was constructed as shown in Fig. 7. The network was
constructed with four layers including input, output and two
hidden layers. Each layer was constructed by grouping neu-
rons. The network consists of one input layer with five neu-
rons, one output layer with two neurons and two hidden layers
with 14 and 8 neurons. The input neurons are cutting speed,
nose radius, volume of metal removed, hardness of workpiece
and feed and output neurons are surface roughness and RMS
of workpiece vibration velocity. Neurons in the hidden layers

were determined by examining different neural networks.
Easy NN plus software was used for training of this network,
and the ANN was trained with back propagation algorithm.
Weights of network connections were randomly selected by
the software. Chinnaswamy et al. [26] and Asilturk [11] have
used the neural networks and multiple regressions for the pre-
diction of surface roughness in machining of hardened AISI
1040 steel. They changed the weights of connections in the net
work until the predicted values were closer to the actual
(experimental) values.

In the present work, the network was trained at different
combinations of neurons and hidden layers. The criterion for
choosing the best combination of neurons and hidden layers
for optimal training is that the values of average training error
and validating errors should always be less than the target
error. At a combination less than 14 and 8, the criterion was
not satisfied. Learning or training of network is a process that
consists of adapting weights to the connections between neu-
rons in the each layer. The learning of neural network was
done with feedforward back propagation algorithm as shown
in Fig. 8. The neural network was trained with 80 samples and
validated with 20 samples. The process of learning was
stopped after 10,700 cycles when the average training error
was less than target error which was set as 0.01. The network
was trained at 0.6 learning rate and at the momentum of 0.8.
The software used in this study itself selected the weights for
the connections according to the given experimental data. It
has selected 56 as weight for the connections between input
layer and hidden layer 1, 98 as weight for the connections
between hidden layer 1 and hidden layer 2 and 28 as weight
for the connections between hidden layer 2 and output layer.
As shown in Fig. 8, the average training error was found as
0.003067 that is less than the target error, i.e. 0.01.

The neural network was trained with 80 samples, validated
with 20 samples and tested for 18 samples. Figure 8 shows
maximum, minimum and average training error and one val-
idating error. Among the three training errors, the software

Fig. 7 Neural network
architecture (5-14-8-2)

Table 5 Experimental results of surface roughness and RMS of
workpiece vibration velocity

Trial no. N R (mm) Speed (m/min) Feed (mm/rev) Ra RMS

1 0.4 170 0.10 3.54 1.2170

2 0.4 170 0.13 3.60 1.2210

3 0.4 170 0.16 4.20 1.2850

4 0.4 190 0.10 4.29 1.2021

5 0.4 190 0.13 3.25 0.9820

6 0.4 190 0.16 4.86 0.9760

7 0.4 210 0.10 3.50 0.9037

8 0.4 210 0.13 5.46 0.9080

9 0.4 210 0.16 4.70 0.8110

10 0.8 170 0.10 2.75 1.4870

11 0.8 170 0.13 5.11 1.3723

12 0.8 170 0.16 3.80 1.4780

13 0.8 190 0.10 4.53 1.3085

14 0.8 190 0.13 5.64 1.1438

15 0.8 190 0.16 5.83 0.9275

16 0.8 210 0.10 3.20 0.9137

17 0.8 210 0.13 4.68 0.8418

18 0.8 210 0.16 3.60 0.8646
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takes the average error into consideration. When the average
training error and the validating error becomes less than the
target error, learning or training of network was stopped.
Table 5 was presented with experimental values of surface
roughness and RMS of workpiece vibration velocity

corresponding to tool failure in each trail. The trained neural
network was used to predict the surface roughness and RMS
of workpiece vibration velocity for the tested 18 trails. The
ANN-predicted values for the 18 trails are presented in
Table 6.

Fig. 8 Learning progress graph with maximum, average and minimum training error

Table 6 Experimental data and
ANN predicted data for 18 trials Trial no. Exp. Ra Pred. Ra % Error Exp. RMS Pred. RMS % Error

1 3.54 3.560 0.56 1.2170 1.2785 4.81

2 3.60 3.546 0.02 1.2210 1.2974 5.88

3 4.20 3.942 6.14 1.2850 1.3074 1.71

4 4.29 4.464 4.05 1.2021 1.1985 0.29

5 3.25 3.194 1.72 0.9820 0.9547 2.78

6 4.86 4.598 5.39 0.9760 0.8929 8.51

7 3.50 3.542 1.20 0.9037 0.9341 3.25

8 5.46 5.253 3.79 0.9080 0.9622 5.63

9 4.70 4.875 3.72 0.8110 0.7946 2.02

10 2.75 2.821 2.58 1.4870 1.4993 0.82

11 5.11 4.867 4.75 1.3723 1.3947 1.60

12 3.80 3.834 0.89 1.4780 1.4214 3.82

13 4.53 4.491 0.86 1.3085 1.2048 7.92

14 5.64 5.352 5.10 1.1438 1.2197 6.22

15 5.83 5.542 4.93 0.9275 0.9428 1.62

16 3.20 3.453 7.90 0.9137 0.9571 4.53

17 4.68 4.854 3.71 0.8418 0.9014 6.61

18 3.60 3.412 5.22 0.8646 0.8246 4.62

Mean of % error 3.47 Mean of % error 4.03
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Table 6 compares the experimental values and predicted
values of surface roughness and RMS of workpiece vibration
for testing data. The predicted values are closer to experimen-
tal values. But there is slight error between the experimental
and predicted values, and it is computed as 3.47 and 4.03 %
for surface roughness and RMS of vibration velocity, respec-
tively. The ANNwas used successfully by different authors in
different machining processes to predict surface roughness,
tool life, temperature in machining, machining time and etc.
[19–21, 23, 26].

5 Conclusions

The present work focused on the prediction of surface rough-
ness and RMS of workpiece vibration velocity in boring of
AISI 1040 steel. According to orthogonal array of L18, 18
experiments were conducted on CNC lathe by varying input
parameters of nose radius, cutting speed and feed rate. A pre-
dictive model of neural network was developed with two hid-
den layers. The network was trained with feedforward back
propagation algorithm using 80 samples and validated for 20
samples. The following conclusions can be drawn from the
present work:

1. In each trial of experiments, a strong correlation among
the dependent and independent variables was found.

2. LDV is proven to be a non-invasive technique to measure
vibration of workpiece. Without LDV measurements, the
conclusions could not be more authentic.

3. In measurement of vibration, it was found that the use of
LDV is easy and it takes less time to measure vibration of
workpiece. Setup of LDV is easy when compared with
setup of accelerometer.

4. The neural network can help in selection of proper cutting
parameters to reduce tool vibration and tool wear and
reduce surface roughness.

5. It was found that there is good agreement between exper-
imental data and neural network-predicted values for sur-
face roughness (3.47 % of error) and RMS of workpiece
vibration velocity (4.03 % of error).

Conflict of interest The authors declare that they have no conflict of
interest.
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