
Heliyon 8 (2022) e12442
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Coupled fixed points of (𝜙, �̂� , 𝜃)-contractive mappings in partially ordered 

𝑏-metric spaces

N. Seshagiri Rao

Department of Mathematics, School of Applied Sciences & Humanities, Vignan’s Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, 
India

A R T I C L E I N F O A B S T R A C T

Keywords:

Fixed point
Compatible and weakly compatible mappings
Coincidence and coupled coincidence points
(𝜙, ̂𝜓, ̂𝜃)-contraction
Uniqueness fixed points

We aim to prove the existence and uniqueness of the fixed points for the self mappings satisfying generalized 
contractions involving altering distance functions in ordered metric type space. The results obtained in this work 
are generalizing some important findings in the literature and few illustrations are given to support the outcomes.

1. Introduction

Metric type space or 𝑏-metric space is one of the most important generalization of a usual metric space. It has many applications in scientific 
and mathematical research. Bakhtin [13], Czerwik [18] have discussed fixed point results over a metric type space very first. In recent times more 
works have been done that focus on to acquire fixed points and, then further extended for coincidence, coupled coincidence points of the maps 
satisfies various contraction conditions in this context. In connection they explored several applications of differential and integral equations, the 
readers may refer from [15, 17, 20, 22, 27, 30, 31, 32, 38, 39, 40] and from the references provided therein. In addition, by implementing necessary 
topological properties on a space and/or mappings which are either single or multi valued in ordered metric type space, several authors have been 
generalized and extended the results, some of such are from [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 21, 23, 24, 25, 26, 28, 29, 33, 
34, 35, 36, 37, 43], which create a natural interest in this direction. Very recently, Seshagiri Rao et al. [41, 42] investigated fixed point results in 
ordered metric type spaces for the mappings satisfying generalized weak contractions involving altering distance functions. Also one can see some 
important generalizations of the fixed points results in 𝐺𝑏-metric space and an extended fuzzy cone 𝑏-metric space by Vishal Gupta et al. [44, 45] 
which will enhance the results obtained in this work.

Now, in this work for obtaining the fixed point of a map J ∶Q→Q, we initiate a generalized contraction given below which is involving altering 
distance functions 𝜙 ∈ Φ̂, �̂� ∈ Ψ̂ and 𝜃 ∈ Θ̂ defined in [0, +∞).

𝜙(sΩ(Jp,J𝜛)) ≤ 𝜙((p,𝜛)) − �̂�((p,𝜛)) +M𝜃((p,𝜛)), (1)

where

(p,𝜛) = max{
Ω(𝜛,J𝜛)

[
1 +Ω(p,Jp)

]
1 +Ω(p,𝜛)

,
Ω(p,Jp) Ω(p,J𝜛)

1 + Ω(p,J𝜛) + Ω(𝜛,Jp)
,Ω(p,𝜛)}, (2)

and

(p,𝜛) = min{Ω(p,Jp),Ω(𝜛,J𝜛),Ω(𝜛,Jp),Ω(p,J𝜛)}, (3)

for all p, 𝜛 ∈Q such that p ⪯𝜛, M ≥ 0, s > 1 and, (Q, Ω, ⪯) is a complete partially ordered 𝑏-metric space (c.p.o.𝑏-m.s.).
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Later, we extend the same contraction condition for a pair mappings in the same context to acquire coincidence, couple coincidence points and 
a common fixed point. These results are the generalizations of [14, 15, 22, 27, 31] and some other results in the literature. The readers may refer 
the necessary definitions, properties and lemmas for the present study from the works of [2, 23, 31, 36, 41, 42].

We employ the following distance functions defined in [0, +∞) all over the work in this paper.

(a). A mapping 𝜙 ∶ [0, +∞) → [0, +∞) is continuously non-decreasing and 𝜙(𝜂) = 0 iff 𝜂 = 0, for any 𝜂 ∈ [0, +∞). Denote all such kind of functions by 
Φ̂.

(b). A mapping �̂� ∶ [0, +∞) → [0, +∞) is such that �̂� is lower semi-continuous and �̂�(𝜂) = 0 iff 𝜂 = 0. Signify all of such functions by Ψ̂.
(c). A mapping 𝜃 ∶ [0, +∞) → [0, +∞) is continuous and 𝜃(𝜂) = 0 iff 𝜂 = 0. Designate all such functions by Θ.

2. Main results

This section starts with the following theorem in a metric type space.

Theorem 2.1. A non-decreasing continuous self mapping J defined on a c.p.o.𝑏-m.s. Q with regards to ⪯ has a fixed point by satisfying contraction (1) and 
for certain p0 ∈Q such that p0 ⪯Jp0.

Proof. If certain p0 ∈Q with Jp0 =p0 then is our result. If not then p0 ≺ Jp0 and then define a sequence {p𝑛} in Q such that p𝑛+1 =Jp𝑛 (𝑛 ≥ 0). 
As from the property of J, we get

p0 ≺ Jp0 =p1 ⪯ ... ⪯p𝑛 ⪯Jp𝑛 =p𝑛+1 ⪯ ... . (4)

If p𝑛0
=p𝑛0+1 for certain 𝑛0 ∈ℕ, then p𝑛0

∈Q is a fixed point of J from equation (4). In contrary, for all 𝑛, p𝑛 ≠p𝑛+1 and then p𝑛 ≻p𝑛−1, (𝑛 ≥ 1) by 
definition. As from equation (1), we get

𝜙(Ω(p𝑛,p𝑛+1)) = 𝜙(Ω(Jp𝑛−1,Jp𝑛)) ≤ 𝜙(sΩ(Jp𝑛−1,Jp𝑛))

≤ 𝜙((p𝑛−1,p𝑛)) − �̂�((p𝑛−1,p𝑛)) +M𝜃((p𝑛−1,p𝑛)),
(5)

where

(p𝑛−1,p𝑛) = max{
Ω(p𝑛,Jp𝑛)

[
1 +Ω(p𝑛−1,Jp𝑛−1)

]
1 +Ω(p𝑛−1,p𝑛)

,
Ω(p𝑛−1,Jp𝑛−1) Ω(p𝑛−1,Jp𝑛)

1 + Ω(p𝑛−1,Jp𝑛) + Ω(p𝑛,Jp𝑛−1)
,

Ω(p𝑛−1,p𝑛)},

=max{Ω(p𝑛,p𝑛+1),
Ω(p𝑛−1,p𝑛) Ω(p𝑛−1,p𝑛+1)

1 +Ω(p𝑛−1,p𝑛+1) + Ω(p𝑛,p𝑛)
, Ω(p𝑛−1,p𝑛)}

≤max{Ω(p𝑛,p𝑛+1),Ω(p𝑛−1,p𝑛)},

(6)

and

(p𝑛−1,p𝑛) = min{Ω(p𝑛−1,Jp𝑛−1),Ω(p𝑛,Jp𝑛),Ω(p𝑛,Jp𝑛−1),Ω(p𝑛−1,Jp𝑛)} = 0. (7)

From equations (5), (6) and (7), we have

Ω(p𝑛,p𝑛+1) = Ω(Jp𝑛−1,Jp𝑛) ≤
1
s
(p𝑛−1,p𝑛). (8)

Suppose max{Ω(p𝑛, p𝑛+1), Ω(p𝑛−1, p𝑛)} =Ω(p𝑛, p𝑛+1) for certain 𝑛 ≥ 1, equation (8) implies that

Ω(p𝑛,p𝑛+1) ≤
1
s
Ω(p𝑛,p𝑛+1), (9)

which leads to a contradiction in equation (9). Thus, max{Ω(p𝑛, p𝑛+1), Ω(p𝑛−1, p𝑛)} =Ω(p𝑛−1, p𝑛), (𝑛 ≥ 1) and hence the equation (8) becomes

Ω(p𝑛,p𝑛+1) ≤
1
s
Ω(p𝑛−1,p𝑛). (10)

Since 0 < 1
s
< 1 and the results from [1, 6, 12, 21] suggests that {p𝑛} is a convergent Cauchy sequence in Q, as Q is complete. Therefore, p𝑛 → 𝜂 ∈Q.

In addition from the continuity property of J, we have

J𝜂 =J( lim
𝑛→+∞

p𝑛) = lim
𝑛→+∞

Jp𝑛 = lim
𝑛→+∞

p𝑛+1 = 𝜂, (11)

this exhibits in equation (11) that 𝜂 is a fixed point of J. □

The mapping J need not be continuous in Theorem 2.1 as a result, we have the following theorem by implementing the condition below on Q:

Let {p𝑛} be a non-decreasing sequence in Q with p𝑛 → 𝜂, for some 𝜂 ∈Q then

p𝑛 ⪯ 𝜂 , (𝑛 ∈ℕ), i.e., 𝜂 = supp𝑛.
(12)

Theorem 2.2. If condition (12) holds by Q in Theorem 2.1, then J has a fixed point.

Proof. By Theorem 2.1, there is a Cauchy sequence {p𝑛} in Q so that p𝑛 → 𝜂, for some 𝜂 ∈Q. Also, as a result from (12), we have p𝑛 ⪯ 𝜂, (𝑛 ≥ 0), i.e. 
𝜂 = supp𝑛.
2
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Next, to show that J𝜂 = 𝜂. In contrary, J𝜂 ≠ 𝜂, then

(p𝑛, 𝜂) = max{
Ω(𝜂,J𝜂)

[
1 +Ω(p𝑛,Jp𝑛)

]
1 +Ω(p𝑛, 𝜂)

,
Ω(p𝑛,Jp𝑛) Ω(p𝑛,J𝜂)

1 + Ω(p𝑛,J𝜂) + Ω(𝜂,Jp𝑛)
,Ω(p𝑛, 𝜂)}, (13)

and

(p𝑛, 𝜂) = min{Ω(p𝑛,Jp𝑛),Ω(𝜂,J𝜂),Ω(𝜂,Jp𝑛),Ω(p𝑛,J𝜂)}. (14)

Taking 𝑛 → +∞ in equations (13) and (14) and also from lim
𝑛→+∞

p𝑛 = 𝜂, we get

lim
𝑛→+∞

(p𝑛, 𝜂) = max{Ω(𝜂,J𝜂),0} = Ω(𝜂,J𝜂) (15)

and

lim
𝑛→+∞

(p𝑛, 𝜂) = min{Ω(𝜂,J𝜂),0} = 0. (16)

We know that, p𝑛 ⪯ 𝜂, ∀𝑛, and thus (1) becomes

𝜙(Ω(p𝑛+1,J𝜂)) = 𝜙(Ω(Jp𝑛,J𝜂)) ≤ 𝜙(sΩ(Jp𝑛,J𝜂))

≤ 𝜙((p𝑛, 𝜂)) − �̂�((p𝑛, 𝜂)) +M𝜃((p𝑛, 𝜂)).
(17)

Taking 𝑛 → +∞ in equation (17) and also from the equations (15) and (16), we obtain that

𝜙(Ω(𝜂,J𝜂)) ≤ 𝜙(Ω(𝜂,J𝜂)) − �̂�(Ω(𝜂,J𝜂)) < 𝜙(Ω(𝜂,J𝜂)), (18)

this is a contradiction from (18). Hence, J𝜂 = 𝜂. □

Theorem 2.3. The mapping J in Theorems 2.1 & 2.2 has a unique fixed point, if Q is comparable.

Proof. Suppose that p∗, 𝜛∗ be any two distinct fixed points of J, thus from (1)

𝜙(Ω(Jp∗,J𝜛∗)) ≤ 𝜙(sΩ(Jp∗,J𝜛∗))

≤ 𝜙((p∗,𝜛∗)) − �̂�((p∗,𝜛∗)) +M𝜃((p∗,𝜛∗)),
(19)

where

(p∗,𝜛∗) = max{
Ω(𝜛∗,J𝜛∗)

[
1 +Ω(p∗,Jp∗)

]
1 +Ω(p∗,𝜛∗)

,
Ω(p∗,Jp∗) Ω(p∗,J𝜛∗)

1 +Ω(p∗,J𝜛∗) + Ω(𝜛∗,Jp∗)
,Ω(p∗,𝜛∗)}

= max{
Ω(𝜛∗,𝜛∗)

[
1 +Ω(p∗,p∗)

]
1 +Ω(p∗,𝜛∗)

,
Ω(p∗,p∗) Ω(p∗,𝜛∗)

1 +Ω(p∗,𝜛∗) + Ω(p∗,𝜛∗)
,Ω(p∗,𝜛∗)}

= max{0,Ω(p∗,𝜛∗)}

= Ω(p∗,𝜛∗)

(20)

and

(p∗,𝜛∗) = min{Ω(p∗,Jp∗),Ω(𝜛∗,J𝜛∗),Ω(𝜛∗,Jp∗),Ω(p∗,J𝜛∗)} = 0. (21)

Equation (21) implies that

Ω(p∗,𝜛∗) = Ω(Jp∗,J𝜛∗) ≤ 1
s
(p∗,𝜛∗), (22)

and hence from (22), we get

Ω(p∗,𝜛∗) ≤ 1
s
Ω(p∗,𝜛∗) <Ω(p∗,𝜛∗), (23)

which leads a contradiction to p∗ ≠𝜛∗ in (23). Therefore, p∗ =𝜛∗. □

We can get the below consequence from Theorems 2.1, 2.2 & 2.3.

Corollary 2.4. The same conclusions will be obtained as from Theorems 2.1, 2.2 & 2.3 by putting M = 0 in (1).

Corollary 2.5. By replacing 𝜙(n) = n and �̂�(n) = (1 − l)n in Corollary 2.4, then the similar conclusions of Theorems 2.1-2.3 will be acquired with the 
following contraction condition

Ω(Jp,J𝜛) ≤ l

s
max{

Ω(𝜛,J𝜛)
[
1 +Ω(p,Jp)

]
1 +Ω(p,𝜛)

,
Ω(p,Jp) Ω(p,J𝜛)

1 + Ω(p,J𝜛) + Ω(𝜛,Jp)
,Ω(p,𝜛)}. (24)

Definition 2.6. A generalized contraction of a self-map J on Q with regards to a mapping g ∶Q→Q is defined by
3
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𝜙(sΩ(Jp,J𝜛)) ≤ 𝜙(g(p,𝜛)) − �̂�(g(p,𝜛)) +M𝜃(g(p,𝜛)), (25)

where

g(gp,g𝜛) = max{
Ω(g𝜛,J𝜛)

[
1 +Ω(gp,Jp)

]
1 +Ω(gp,g𝜛)

,
Ω(gp,Jp) Ω(gp,J𝜛)

1 + Ω(gp,J𝜛) + Ω(g𝜛,Jp)
,Ω(gp,g𝜛)}, (26)

and

g(gp,g𝜛) = min{Ω(gp,Jp),Ω(g𝜛,J𝜛),Ω(g𝜛,Jp),Ω(gp,J𝜛)}, (27)

for all p, 𝜛 ∈Q with gp ⪯g𝜛, 𝜙 ∈ Φ̂, �̂� ∈ Ψ̂ and 𝜃 ∈ Θ̂.

Theorem 2.7. A coincidence point exists for the continuous mappings J and g defined in above Definition 2.6 satisfies condition (25) with the following 
assumptions:

(a). J is monotone g-non-decreasing mapping,

(b). JQ ⊆gQ,

(c). J and g are compatible mappings,

(c). gp0 ⪯Jp0 for certain p0 ∈Q and

(d). (Q, Ω, ⪯) is complete.

Proof. By Theorem 2.2 [8], there exists two sequences {p𝑛}, {𝜛𝑛} ⊆Q such that

𝜛𝑛 =Jp𝑛 =gp𝑛+1 for all 𝑛 ≥ 0, (28)

for which

gp0 ⪯gp1 ⪯ .... ⪯gp𝑛 ⪯gp𝑛+1 ⪯ .... . (29)

Now from [8], we have to show that

Ω(𝜛𝑛,𝜛𝑛+1) ≤ 𝜆Ω(𝜛𝑛−1,𝜛𝑛) (𝑛 ≥ 1), (30)

where 0 ≤ 𝜆 < 1
s
. From the equations (25)-(29), we have

𝜙(sΩ(𝜛𝑛,𝜛𝑛+1)) = 𝜙(sΩ(Jp𝑛,Jp𝑛+1))

≤ 𝜙(g(p𝑛,p𝑛+1)) − �̂�(g(p𝑛,p𝑛+1)) +M𝜃(g(p𝑛,p𝑛+1)),
(31)

where

g(p𝑛,p𝑛+1) = max{
Ω(gp𝑛+1,Jp𝑛+1)

[
1 +Ω(gp𝑛,Jp𝑛)

]
1 +Ω(gp𝑛,gp𝑛+1)

,

Ω(gp𝑛,Jp𝑛) Ω(gp𝑛,Jp𝑛+1)
1 +Ω(gp𝑛,Jp𝑛+1) + Ω(gp𝑛+1,Jp𝑛)

,Ω(gp𝑛,gp𝑛+1)}

= max{
Ω(𝜛𝑛,𝜛𝑛+1)

[
1 +Ω(𝜛𝑛−1,𝜛𝑛)

]
1 +Ω(𝜛𝑛−1,𝜛𝑛)

,

Ω(𝜛𝑛−1,𝜛𝑛) Ω(𝜛𝑛−1,𝜛𝑛+1)
1 +Ω(𝜛𝑛−1,𝜛𝑛+1) + Ω(𝜛𝑛,𝜛𝑛)

,Ω(𝜛𝑛−1,𝜛𝑛)}

≤max{Ω(𝜛𝑛−1,𝜛𝑛),Ω(𝜛𝑛,𝜛𝑛+1)}

(32)

and

g(p𝑛,p𝑛+1) = min{Ω(gp𝑛,Jp𝑛),Ω(gp𝑛+1,Jp𝑛+1),Ω(gp𝑛+1,Jp𝑛),Ω(gp𝑛,Jp𝑛+1)}

= min{Ω(𝜛𝑛−1,𝜛𝑛),Ω(𝜛𝑛,𝜛𝑛+1),Ω(𝜛𝑛,𝜛𝑛),Ω(𝜛𝑛−1,𝜛𝑛+1)} = 0.
(33)

From (31), we get

𝜙(sΩ(𝜛𝑛,𝜛𝑛+1)) ≤ 𝜙(max{Ω(𝜛𝑛−1,𝜛𝑛),Ω(𝜛𝑛,𝜛𝑛+1)}) − �̂�(max{Ω(𝜛𝑛−1,𝜛𝑛),Ω(𝜛𝑛,𝜛𝑛+1)}). (34)

If 0 <Ω(𝜛𝑛−1, 𝜛𝑛) ≤Ω(𝜛𝑛, 𝜛𝑛+1) for certain 𝑛, then equation (34) follows that

𝜙(sΩ(𝜛𝑛,𝜛𝑛+1)) ≤ 𝜙(Ω(𝜛𝑛,𝜛𝑛+1)) − �̂�(Ω(𝜛𝑛,𝜛𝑛+1)) < 𝜙(Ω(𝜛𝑛,𝜛𝑛+1)), (35)

or equivalently

sΩ(𝜛𝑛,𝜛𝑛+1) ≤Ω(𝜛𝑛,𝜛𝑛+1), (36)

which is a contradiction. Therefore, the equation (34) becomes

sΩ(𝜛𝑛,𝜛𝑛+1) ≤Ω(𝜛𝑛−1,𝜛𝑛). (37)

Hence 0 ≤ 𝜆 < 1 from (30). According to Lemma 3.1 [28] and, from equation (30), we get

s

4
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lim
𝑛→+∞

Jp𝑛 = lim
𝑛→+∞

gp𝑛+1 = 𝜇, where 𝜇 ∈Q. (38)

Also by the condition (c), we get

lim
𝑛→+∞

Ω(g(Jp𝑛),J(gp𝑛)) = 0. (39)

Moreover, by continuity of J, g we have

lim
𝑛→+∞

g(Jp𝑛) =g𝜇, lim
𝑛→+∞

J(gp𝑛) =J𝜇. (40)

Furthermore,

1
s
Ω(J𝜇,g𝜇) ≤Ω(J𝜇,J(gp𝑛)) + sΩ(J(gp𝑛),g(Jp𝑛)) + sΩ(g(Jp𝑛),g𝜇). (41)

Therefore, Ω(J𝑣, g𝑣) = 0 as 𝑛 → +∞ in (41) and from (38)-(40). Hence the proof. □

We have the accompanying result without the continuity of g, J in hypotheses of Theorem 2.7 and Q has the below property:

A sequence {gp𝑛} ∈Q, which is nondecreasing with lim
𝑛→+∞

gp𝑛 =gp ∈gQ,where gQ

is a closed subset of Q and gp𝑛 ⪯gp,gp ⪯g(gp) for 𝑛 with gp0 ⪯Jp0 for somep0 ∈Q.
(42)

Theorem 2.8. If Q satisfies condition (42) in Theorem 2.7, then

(a). J and g have a coincidence point when J and g are weakly compatible and

(b). J, g have a common fixed point, when J and g are commuting at their coincidence points.

Proof. Since {𝜛𝑛} = {Jp𝑛} = {gp𝑛+1} is a Cauchy sequence by Theorem 2.7 and hence by completeness of gQ, lim
𝑛→+∞

Jp𝑛 = lim
𝑛→+∞

gp𝑛+1 → g𝜇, 
some 𝜇 ∈Q as gQ is closed. Also, gp𝑛 ⪯g𝜇, (𝑛 ≥ 0), we obtain that

𝜙(sΩ(Jp𝑛,J𝜇)) ≤ 𝜙(g(p𝑛, 𝜇)) − �̂�(g(p𝑛, 𝜇)) +M𝜃(g(p𝑛, 𝜇)), (43)

where

g(p𝑛, 𝜇) = max{
Ω(g𝜇,J𝜇)

[
1 +Ω(gp𝑛,Jp𝑛)

]
1 +Ω(gp𝑛,g𝜇)

,
Ω(gp𝑛,Jp𝑛) Ω(gp𝑛,J𝜇)

1 + Ω(gp𝑛,J𝜇) + Ω(g𝜇,Jp𝑛)
,Ω(gp𝑛,g𝜇)}

→max{Ω(g𝜇,J𝜇),0}

= Ω(g𝜇,J𝜇) as 𝑛→ +∞,

(44)

and,

g(p𝑛, 𝜇) = min{Ω(gp𝑛,Jp𝑛),Ω(g𝜇,J𝜇),Ω(g𝜇,Jp𝑛),Ω(gp𝑛,J𝜇)}

→min{Ω(g𝜇,J𝜇),0}

= 0 as 𝑛→ +∞.

(45)

As a consequence, the equation (43) suggests that,

𝜙(s lim
𝑛→+∞

Ω(Jp𝑛,J𝜇)) ≤ 𝜙(Ω(g𝜇,J𝜇)) − �̂�(Ω(g𝜇,J𝜇)) < 𝜙(Ω(g𝜇,J𝜇)). (46)

Thus,

lim
𝑛→+∞

Ω(Jp𝑛,J𝜇) < 1
s
Ω(g𝜇,J𝜇). (47)

Furthermore, the metric triangular inequality follows that

1
s
Ω(g𝜇,J𝜇) ≤Ω(g𝜇,Jp𝑛) + Ω(Jp𝑛,J𝜇). (48)

If g𝜇 ≠J𝜇 then (47) and (48) lead to a contradiction. Therefore, g𝜇 =J𝜇. Suppose that, g𝜇 =J𝜇 = 𝜌, then J𝜌 =J(g𝜇) =g(J𝜇) =g𝜌. Again from
(43) with g𝜇 =g(g𝜇) =g𝜌 and g𝜇 =J𝜇, g𝜌 =J𝜌, we get

𝜙(sΩ(J𝜇,J𝜌)) ≤ 𝜙(g(𝜇, 𝜌)) − �̂�(g(𝜇, 𝜌)) < 𝜙(Ω(J𝜇,J𝜌)), (49)

or equivalently,

sΩ(J𝜇,J𝜌) ≤Ω(J𝜇,J𝜌). (50)

If J𝜇 ≠J𝜌, then from (50) follows a contradiction. Therefore, J𝜇 =J𝜌 = 𝜌 and then J𝜇 =g𝜌 = 𝜌. Hence the result. □

Definition 2.9. Let (Q, Ω, ⪯) be a partially ordered metric type space and g is self-map on it. A map J ∶Q ×Q →Q is known to be a generalized 
(𝜙, ̂𝜓, ̂𝜃)-contraction w.r.t. g, if
5
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𝜙(s𝑘Ω(J(p,𝜛),J(𝜚, 𝜎))) ≤ 𝜙(g(p,𝜛, 𝜚, 𝜎)) − �̂�(g(p,𝜛, 𝜚, 𝜎)) +M𝜃(g(p,𝜛, 𝜚, 𝜎)), (51)

for p, 𝜛, 𝜚, 𝜎 ∈Q such that gp ⪯g𝜚, g𝜛 ⪰g𝜎, l > 2, s > 1, M ≥ 0, 𝜙 ∈ Φ̂, �̂� ∈ Ψ̂ and 𝜃 ∈Θ and, where

g(p,𝜛, 𝜚, 𝜎) = max{
Ω(g𝜚,J(𝜚, 𝜎))

[
1 +Ω(gp,J(p,𝜛))

]
1 +Ω(gp,g𝜛)

,

Ω(gp,J(p,𝜛)) Ω(gp,J(𝜚, 𝜎))
1 + Ω(gp,J(𝜚, 𝜎)) + Ω(g𝜛,J(p,𝜛))

,Ω(gp,g𝜛)},
(52)

and

g(p,𝜛, 𝜚, 𝜎) = min{Ω(gp,J(p,𝜛)),Ω(g𝜚,J(𝜚, 𝜎)),Ω(g𝜛,J(p,𝜛)),Ω(gp,J(𝜚, 𝜎))}. (53)

Theorem 2.10. The mappings J and g defined in Definition 2.9 have a coupled coincidence point if

(i). J and g are continuous,

(ii). J is mixed g-monotone and commutes with g and

(iii). there exists (p0, 𝜛0) ∈Q ×Q such that gp0 ⪯J(p0, 𝜛0), g𝜛0 ⪰J(𝜛0, p0) and J(Q ×Q) ⊆g(Q), where Q is complete.

Proof. As by Theorem 2.2 [8], there are two sequences {p𝑛}, {𝜛𝑛} ⊂Q with

gp𝑛+1 =J(p𝑛,𝜛𝑛), g𝜛𝑛+1 =J(𝜛𝑛,p𝑛), (𝑛 ≥ 0), (54)

where {gp𝑛} is nondecreasing and {g𝜛𝑛} is nonincreasing in Q. Let p=p𝑛, 𝜛 =𝜛𝑛, 𝜚 =p𝑛+1, 𝜎 =𝜛𝑛+1 in (51), we have

𝜙(slΩ(gp𝑛+1,gp𝑛+2)) = 𝜙(slΩ(J(p𝑛,𝜛𝑛),J(p𝑛+1,𝜛𝑛+1)))

≤ 𝜙(g(p𝑛,𝜛𝑛,p𝑛+1,𝜛𝑛+1)) − �̂�(g(p𝑛,𝜛𝑛,p𝑛+1,𝜛𝑛+1)) +M𝜃(g(p𝑛,𝜛𝑛,p𝑛+1,𝜛𝑛+1)),
(55)

here

g(p𝑛,𝜛𝑛,p𝑛+1,𝜛𝑛+1) = max{Ω(gp𝑛,gp𝑛+1),Ω(gp𝑛+1,gp𝑛+2)}, (56)

and,

g(p𝑛,𝜛𝑛,p𝑛+1,𝜛𝑛+1) = min{Ω(gp𝑛,gp𝑛+1),Ω(gp𝑛+1,gp𝑛+2),

Ω(gp𝑛+1,gp𝑛+1),Ω(gp𝑛,gp𝑛+2)} = 0.
(57)

Therefore from (55) using (56) and (57), we get

𝜙(slΩ(gp𝑛+1,gp𝑛+2)) ≤ 𝜙(max{Ω(gp𝑛,gp𝑛+1),Ω(gp𝑛+1,gp𝑛+2)})

− �̂�(max{Ω(gp𝑛,gp𝑛+1),Ω(gp𝑛+1,gp𝑛+2)}).
(58)

Also by letting p =𝜛𝑛+1, 𝜛 =p𝑛+1, 𝜚 =p𝑛 and, 𝜎 =p𝑛 in (51), we get

𝜙(slΩ(g𝜛𝑛+1,g𝜛𝑛+2)) ≤ 𝜙(max{Ω(g𝜛𝑛,g𝜛𝑛+1),Ω(g𝜛𝑛+1,g𝜛𝑛+2)})

− �̂�(max{Ω(g𝜛𝑛,g𝜛𝑛+1),Ω(g𝜛𝑛+1,g𝜛𝑛+2)}).
(59)

It is known that max{𝜙(𝜂1), 𝜙(𝜂2)} = 𝜙{max{𝜂1, 𝜂2}} for 𝜂1, 𝜂2 ∈ [0, +∞). Then by adding the equations (58) and (59) together to get,

𝜙(slΠ𝑛) ≤ 𝜙(max{Ω(gp𝑛,gp𝑛+1),Ω(gp𝑛+1,gp𝑛+2),Ω(g𝜛𝑛,g𝜛𝑛+1),Ω(g𝜛𝑛+1,g𝜛𝑛+2)})

− �̂�(max{Ω(gp𝑛,gp𝑛+1),Ω(gp𝑛+1,gp𝑛+2),Ω(g𝜛𝑛,g𝜛𝑛+1),Ω(g𝜛𝑛+1,g𝜛𝑛+2)})
(60)

here

Π𝑛 =max{Ω(gp𝑛+1,gp𝑛+2),Ω(g𝜛𝑛+1,g𝜛𝑛+2)}. (61)

Let,

Ξ𝑛 =max{Ω(gp𝑛,gp𝑛+1),Ω(gp𝑛+1,gp𝑛+2),Ω(g𝜛𝑛,g𝜛𝑛+1),Ω(g𝜛𝑛+1,g𝜛𝑛+2)}, (62)

hence from equations (58)-(61), we obtain

slΠ𝑛 ≤ Ξ𝑛. (63)

Now to claim that

Π𝑛 ≤ 𝜆Π𝑛−1, (𝑛 ≥ 1), (64)

here 0 ≤ 𝜆 < 1
sl

.
Since s < 1 and if Ξ𝑛 = Π𝑛 then Π𝑛 = 0 from (63) and thus (64) holds. If Ξ𝑛 = max{Ω(gp𝑛, gp𝑛+1), Ω(g𝜛𝑛, g𝜛𝑛+1)}, that is, Ξ𝑛 = Π𝑛−1 then from

(63), we get Π𝑛 ≤ 𝜆𝑛Π0 and implies that

Ω(gp𝑛+1,gp𝑛+2) ≤ 𝜆𝑛Π0 and, Ω(g𝜛𝑛+1,g𝜛𝑛+2) ≤ 𝜆𝑛Π0, (65)
6
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from Lemma 3.1 [28] that {gp𝑛} and {g𝜛𝑛} are Cauchy sequences in Q. Thus, J and g have a coincidence point from Theorem 2.2 [4]. □

Corollary 2.11. A continuous and mixed monotone mapping J ∶Q ×Q→Q has a coupled fixed point in Q, where Q is complete for (p0, 𝜛0) ∈Q ×Q with 
p0 ⪯J(p0, 𝜛0) and 𝜛0 ⪰J(𝜛0, p0) satisfying the following contractions:

(i).

𝜙(slΩ(J(p,𝜛),J(𝜚, 𝜎))) ≤ 𝜙(g(p,𝜛, 𝜚, 𝜎)) − �̂�(g(p,𝜛, 𝜚, 𝜎)) +M𝜃(g(p,𝜛, 𝜚, 𝜎)), (66)

(ii).

Ω(J(p,𝜛),J(𝜚, 𝜎)) ≤ 1
sl

g(p,𝜛, 𝜚, 𝜎) − 1
sl

�̂�(g(p,𝜛, 𝜚, 𝜎)), M = 0, (67)

where

g(p,𝜛, 𝜚, 𝜎) = max{
Ω(𝜚,J(𝜚, 𝜎))

[
1 +Ω(p,J(p,𝜛))

]
1 +Ω(p,𝜛)

,
Ω(p,J(p,𝜛)) Ω(p,J(𝜚, 𝜎))

1 +Ω(p,J(𝜚, 𝜎)) + Ω(𝜛,J(p,𝜛))
,

Ω(p,𝜛)},
(68)

and

g(p,𝜛, 𝜚, 𝜎) = min{Ω(p,J(p,𝜛)),Ω(𝜚,J(𝜚, 𝜎)),Ω(𝜛,J(p,𝜛)),Ω(p,J(𝜚, 𝜎))}, (69)

for p, 𝜛, 𝜚, 𝜎 ∈Q with p ⪯ 𝜚 and 𝜛 ⪰ 𝜎, l > 2, s> 1 and, 𝜙 ∈ Φ̂, �̂� ∈ Ψ̂ and 𝜃 ∈Θ.

Theorem 2.12. According to Theorem 2.10, J and g have a unique coupled common fixed point, if for all (𝛾∗, 𝜂∗) ∈Q ×Q so that (J(𝛾∗, 𝜂∗), J(𝜂∗, 𝛾∗)) is 
comparable to both (J(p, 𝜛), J(𝜛, p)) and (J(k, m), J(m, k)).

Proof. A coupled coincidence point for J and g exists by Theorem 2.10. For uniqueness, let (p, 𝜛), (k, m) be two coupled coincidence points 
of J and g, whence to show that gp = gk and g𝜛 = gm. By the hypotheses, if for some (𝛾∗, 𝜂∗) ∈ Q ×Q, (J(𝛾∗, 𝜂∗), J(𝜂∗, 𝛾∗)) is comparable to 
(J(p, 𝜛), J(𝜛, p)).

Suppose that,

(J(p,𝜛),J(𝜛,p)) ≤ (J(𝛾∗, 𝜂∗),J(𝜂∗, 𝛾∗)) and

(J(k,m),J(m,k)) ≤ (J(𝛾∗, 𝜂∗),J(𝜂∗, 𝛾∗)).
(70)

Let 𝛾∗0 = 𝛾∗ and 𝜂∗0 = 𝜂∗ and then a point (𝛾∗1, 𝜂∗1) ∈Q ×Q so that

g𝛾∗1 =J(𝛾∗0, 𝜂∗0), g𝜂∗1 =J(𝜂∗0, 𝛾∗0), for (𝑛 ≥ 1). (71)

Consequently, we have two sequences {g𝛾∗𝑛} and {g𝜂∗𝑛} in Q by

g𝛾∗𝑛+1 =J(𝛾∗𝑛, 𝜂∗𝑛), g𝜂∗𝑛+1 =J(𝜂∗𝑛, 𝛾∗𝑛), (𝑛 ≥ 0). (72)

As by similar processor, we obtain the sequences {gp𝑛}, {g𝜛𝑛} and {gk𝑛}, {gJ𝑛} in Q by letting p0 =p, 𝜛0 =𝜛 and k0 =k, m0 =m and then

gp𝑛 →J(p,𝜛), g𝜛𝑛 →J(𝜛,p), gk𝑛 →J(k,m), gJ𝑛 →J(m,k) (𝑛 ≥ 1). (73)

Inductively, we get

(gp𝑛,g𝜛𝑛) ≤ (g𝛾∗𝑛,g𝜂∗𝑛), 𝑛 ≥ 0. (74)

Now from the contraction condition (51), we have

𝜙(Ω(gp,g𝛾∗𝑛+1)) ≤ 𝜙(slΩ(gp,g𝛾∗𝑛+1)) = 𝜙(slΩ(J(p,𝜛),J(𝛾∗𝑛, 𝜂∗𝑛)))

≤ 𝜙(g(p,𝜛, 𝛾∗𝑛, 𝜂
∗
𝑛)) − �̂�(g(p,𝜛, 𝛾∗𝑛, 𝜂

∗
𝑛))

+M𝜃(g(p,𝜛, 𝛾∗𝑛, 𝜂
∗
𝑛)),

(75)

where

g(p,𝜛, 𝛾∗𝑛, 𝜂
∗
𝑛) = max{

Ω(g𝛾∗𝑛,J(𝛾∗𝑛, 𝜂∗𝑛))
[
1 +Ω(gp,J(p,𝜛))

]
1 +Ω(gp,g𝜛)

,

Ω(gp,J(p,𝜛)) Ω(gp,J(𝛾∗𝑛, 𝜂∗𝑛))
1 + Ω(gp,J(𝛾∗𝑛, 𝜂∗𝑛)) + Ω(g𝜛,J(p,𝜛))

,Ω(gp,g𝛾∗𝑛)}

= max{0,Ω(gp,g𝛾∗𝑛)}

= Ω(gp,g𝛾∗𝑛)

(76)

and

g(p,𝜛, 𝛾∗𝑛, 𝜂
∗
𝑛) = min{Ω(gp,J(p,𝜛)),Ω(g𝛾∗𝑛,J(𝛾∗𝑛, 𝜂∗𝑛)),Ω(g𝜛,J(p,𝜛)),

Ω(gp,J(𝛾∗ , 𝜂∗ ))} = 0.
(77)
𝑛 𝑛

7
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The equations (75)-(77) follows that,

𝜙(Ω(gp,g𝛾∗𝑛+1)) ≤ 𝜙(Ω(gp,g𝛾∗𝑛)) − �̂�(Ω(gp,g𝛾∗𝑛)). (78)

Also by similar argument, we have

𝜙(Ω(g𝜛,g𝜂∗𝑛+1)) ≤ 𝜙(Ω(g𝜛,g𝜂∗𝑛)) − �̂�(Ω(g𝜛,g𝜂∗𝑛)). (79)

Therefore from the equations (75) and (79), we get

𝜙(max{Ω(gp,g𝛾∗𝑛+1),Ω(g𝜛,g𝜂∗𝑛+1)}) ≤ 𝜙(max{Ω(gp,g𝛾∗𝑛),Ω(g𝜛,g𝜂∗𝑛)})

− �̂�(max{Ω(gp,g𝛾∗𝑛),Ω(g𝜛,g𝜂∗𝑛)})

< 𝜙(max{Ω(gp,g𝛾∗𝑛),Ω(g𝜛,g𝜂∗𝑛)}),

(80)

which implies by 𝜙 that

max{Ω(gp,g𝛾∗𝑛+1),Ω(g𝜛,g𝜂∗𝑛+1)} <max{Ω(gp,g𝛾∗𝑛),Ω(g𝜛,g𝜂∗𝑛)}. (81)

From which the sequence, max{Ω(gp, g𝛾∗𝑛), Ω(g𝜛, g𝜂∗𝑛)} is non-increasing and bounded below and hence from known result, we get

lim
𝑛→+∞

max{Ω(gp,g𝛾∗𝑛),Ω(g𝜛,g𝜂∗𝑛)} = Λ, Λ ≥ 0. (82)

As 𝑛 → +∞ in equation (80), we obtain that

𝜙(Λ) ≤ 𝜙(Λ) − �̂�(Λ). (83)

Consequently, (82) follows that �̂�(Λ) = 0 and then Λ = 0. Thus,

lim
𝑛→+∞

max{Ω(gp,g𝛾∗𝑛),Ω(g𝜛,g𝜂∗𝑛)} = 0, (84)

which implies that,

lim
𝑛→+∞

Ω(gp,g𝛾∗𝑛) = 0 and lim
𝑛→+∞

Ω(g𝜛,g𝜂∗𝑛) = 0. (85)

As by similar process, we have

lim
𝑛→+∞

Ω(gk,g𝛾∗𝑛) = 0 and lim
𝑛→+∞

Ω(gJ,g𝜂∗𝑛) = 0. (86)

Therefore from (85) and (86), we get gp =gk and g𝜛 =gJ. As J commutes with g and also gp =J(p, 𝜛) and g𝜛 =J(𝜛, p) suggests that

g(gp) =g(J(p,𝜛)) =J(gp,g𝜛), g(g𝜛) =g(J(𝜛,p)) =J(g𝜛,gp). (87)

If gp = 𝛾∗
1

and g𝜛 = 𝜂∗
1

then from (87), we get

g(𝛾∗1 ) =J(𝛾∗1 , 𝜂
∗
1 ) and g(𝜂∗1 ) =J(𝜂∗1 , 𝛾

∗
1 ). (88)

Thus, J and g have a coupled coincidence point (𝛾∗
1
, 𝜂∗

1
) by (88). Which results in g(𝛾∗

1
) =gk and g(𝜂∗

1
) =gJ. Hence, g(𝛾∗

1
) = 𝛾∗

1
and g(𝜂∗

1
) = 𝜂∗

1
.

Let (𝛾∗
2
, 𝜂∗

2
) be another coupled common fixed point. Then 𝛾∗

2
= g𝛾∗

2
= J(𝛾∗

2
, 𝜂∗

2
) and 𝜂∗

2
= g𝜂∗

2
= J(𝜂∗

2
, 𝛾∗

2
). But (𝛾∗

2
, 𝜂∗

2
) is a coupled common fixed 

point for J, g then g𝛾∗
2
=gp = 𝛾∗

1
and g𝜂∗

2
=g𝜛 = 𝜂∗

1
. Therefore, 𝛾∗

2
=g𝛾∗

2
=g𝛾∗

1
= 𝛾∗

1
and 𝜂∗

2
=g𝜂∗

2
=g𝜂∗

1
= 𝜂∗

1
. Hence the uniqueness. □

Theorem 2.13. The unique common fixed point for J and g in Theorem 2.12 exists, if gp0 ⪯g𝜛0 or gp0 ⪰g𝜛0.

Proof. We have to show that p =𝜛 for a unique common fixed point (p, 𝜛) ∈Q of the the mappings J and g. If gp0 ⪯g𝜛0 then gp𝑛 ⪯g𝜛𝑛, (𝑛 ≥ 0)
by induction. As by Lemma 2 [29], we have

𝜙(sl−2Ω(p,𝜛)) = 𝜙(sl 1
s2

Ω(p,𝜛)) ≤ lim
𝑛→+∞

sup𝜙(slΩ(p𝑛+1,𝜛𝑛+1))

= lim
𝑛→+∞

sup𝜙(slΩ(J(p𝑛,𝜛𝑛),J(𝜛𝑛,p𝑛)))

≤ lim
𝑛→+∞

sup𝜙(g(p𝑛,𝜛𝑛,𝜛𝑛,p𝑛)) − lim
𝑛→+∞

inf �̂�(g(p𝑛,𝜛𝑛,𝜛𝑛,p𝑛))

+ lim
𝑛→+∞

supM𝜃(𝑓 (p𝑛,𝜛𝑛,𝜛𝑛,p𝑛))

≤ 𝜙(Ω(p,𝜛)) − lim
𝑛→+∞

inf �̂�(𝑓 (p𝑛,𝜛𝑛,𝜛𝑛,p𝑛))

< 𝜙(Ω(p,𝜛)),

(89)

thus (89) follows a contraction. As a result we get p =𝜛.
Also get the same conclusion, if gp0 ⪰g𝜛0. □

Remark 2.14. If s = 1, the contraction condition

𝜙(Ω(J(p,𝜛),J(𝜚,𝜛))) ≤ 𝜙(max{Ω(gp,g𝜚),Ω(g𝜛,g𝜛)}) − �̂�(max{Ω(gp,g𝜚),Ω(g𝜛,g𝜛)}) (90)
8
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becomes,

Ω(J(p,𝜛),J(𝜚,𝜛)) ≤ 𝜑(max{Ω(gp,g𝜚),Ω(g𝜛,g𝜛)}), (91)

as by the consequence of [27], where 𝜑 ∶ [0, +∞) → [0, +∞) is a continuous mapping with 𝜑(𝜂) < 𝜂 for any 𝜂 > 0 as well as 𝜑(𝜂) = 0 iff 𝜂 = 0 and 
𝜙 ∈ Φ̂, �̂� ∈ Ψ̂. Therefore, the results obtained in this paper are generalizing and extending the findings in [15, 22, 31, 32] and many outcomes in 
the literature.

Below are some examples given based on a metric Ω is continuous or discontinuous.

Example 2.15. A metric Ω ∶Q ×Q→Q, where Q = {a,b, c,d, e, f } defined as

Ω(p,𝜛) = Ω(𝜛,p) = 0, if p =𝜛 = a,b, c,d, e, f and p =𝜛,

Ω(p,𝜛) = Ω(𝜛,p) = 3, 𝑖𝑓 p =𝜛 = a,b, c,d, e and p ≠𝜛,

Ω(p,𝜛) = Ω(𝜛,p) = 12, 𝑖𝑓 p = a,b, c,d and 𝜛 = f ,

Ω(p,𝜛) = Ω(𝜛,p) = 20, 𝑖𝑓 p = e and 𝜛 = f , with usual order ≤ .

Let J ∶Q→Q be a mapping defined as Ja =Jb =Jc =Jd =Je = 1, Jf = 2, 𝜙(𝜂) = 𝜂

2 and �̂�(𝜂) = 𝜂

4 , for 𝜂 ∈ [0, +∞). Then J has a fixed point in Q.

Proof. The metric is complete for s = 2 and then (Q, Ω, ≤) is a c.p.o.𝑏-m.s.. Also its clear that Ω is continuous. Let p, 𝜛 ∈Q with p < 𝜛 then,
Case (i). Suppose p, 𝜛 ∈ {a,b, c,d, e}, then we have Ω(Jp, J𝜛) =Ω(a, a) = 0. Therefore

𝜙(2Ω(Jp,J𝜛)) ≤ 𝜙((p,𝜛)) − �̂�((p,𝜛)). (92)

Case (ii). Suppose p∈ {a,b, c,d, e} and 𝜛 = f , then we have Ω(Jp, J𝜛) =Ω(a, b) = 3 and (f , e) = 20, (p, f ) = 12, where p ∈ {a,b, c,d}. Thus,

𝜙(2Ω(Jp,J𝜛)) ≤
(p,𝜛)

d
= 𝜙((p,𝜛)) − �̂�((p,𝜛)). (93)

Hence the conclusion as all assumptions of Corollary 2.4 are fulfilled. □

Example 2.16. With usual order ≤, define a metric Ω by

Ω(p,𝜛) =

⎧⎪⎪⎨⎪⎪⎩

0 , 𝑓𝑜𝑟 p =𝜛

1 , 𝑓𝑜𝑟 p ≠𝜛 ∈ {0,1}
|p−𝜛| , 𝑓𝑜𝑟 p,𝜛 ∈ {0, 1

2𝑛 ,
1
2𝑚 ∶ 𝑛 ≠𝑚 ≥ 1}

2 , 𝑜𝑡ℎ𝑒𝑟𝑐𝑎𝑠𝑒𝑠

(94)

where Q = {0, 1, 12 , 
1
3 , 

1
4 , ...

1
𝑛
, ...}. A mapping J ∶Q→Q has a fixed point with J0 = 0, J 1

𝑛
= 1

12𝑛 , 𝑛 ≥ 1 and 𝜙(𝜂) = 𝜂, �̂�(𝜂) = 4𝜂
5 where 𝜂 ∈ [0, +∞).

Proof. By definition of a metric Ω is discontinuous and for s = 12
5 , (Q, Ω, ≤) is a c.p.o.𝑏-m.s. For p, 𝜛 ∈Q such that p < 𝜛, then:

Case (i). Let p= 0 and 𝜛 = 1
𝑛

for 𝑛 > 0. Then Ω(Jp, J𝜛) = 1
12𝑛 and (p, 𝜛) = 1

𝑛
and (p, 𝜛) = {1, 2}. Thus,

𝜙
( 12
5
Ω(Jp,J𝜛)

)
≤

(p,𝜛)
5

= 𝜙((p,𝜛)) − �̂�((p,𝜛)). (95)

Case (ii). Let p= 1
𝑚

and 𝜛 = 1
𝑛

where 𝑚 > 𝑛 ≥ 1, then

Ω(Jp,J𝜛) = Ω( 1
12𝑚

,
1
12𝑛

), (p,𝜛) ≥ 1
𝑛
− 1

𝑚
or (p,𝜛) = 2. (96)

Therefore,

𝜙
( 12
5
Ω(Jp,J𝜛)

)
≤

(p,𝜛)
5

= 𝜙((p,𝜛)) − �̂�((p,𝜛)). (97)

Therefore, by Corollary 2.4, we have the result. □

Example 2.17. Let Q = {℧∕℧ ∶ [𝑎1, 𝑎2] → [𝑎1, 𝑎2] is continuous map} and, a metric Ω ∶Q ×Q→Q defined by

Ω(℧1,℧2) = sup
𝜂∈[𝑎1 ,𝑎2]

{|℧1(𝜂) − ℧2(𝜂)|2}
for every ℧1, ℧2 ∈ Q, 0 ≤ 𝑎1 < 𝑎2 and if ℧1 ⪯ ℧2 then 𝑎1 ≤ ℧1(𝜂) ≤ ℧2(𝜂) ≤ 𝑎2, 𝜂 ∈ [𝑎1, 𝑎2]. A mapping J ∶ Q → Q has a unique fixed point with 
J℧ = ℧

5 , ℧ ∈Q and 𝜙(�̈�) = �̈�, �̂�(�̈�) = �̈�

3 , �̈� ∈ [0, +∞).

Proof. For s = 2 with above metric all assumptions in Theorem 2.3 are satisfied as min(℧1, ℧2)(𝜂) = min{℧1(𝜂), ℧2(𝜂)} is continuous. And hence, 
0 ∈Q is the only fixed point to J. Hence the uniqueness. □
9
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3. Conclusion and future works

The current study explored fixed point results of the mappings satisfies generalized weak contractions in a complete partially ordered 𝑏-metric 
space. The obtained outcomes generalized and, extended some main results in the literature. Further, suitable examples are presented to support 
the findings in this work.

These results can be extended further by assuming suitable topological properties on mappings as well as various ordered metric spaces like 
𝐺𝑏-metric spaces, extended fuzzy cone 𝑏-metric space, etc.
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