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ARTICLE INFO ABSTRACT
Keywords: We aim to prove the existence and uniqueness of the fixed points for the self mappings satisfying generalized
Fixed point contractions involving altering distance functions in ordered metric type space. The results obtained in this work

Compatible and weakly compatible mappings
Coincidence and coupled coincidence points
(¢, 9, 0)-contraction

Uniqueness fixed points

are generalizing some important findings in the literature and few illustrations are given to support the outcomes.

1. Introduction

Metric type space or b-metric space is one of the most important generalization of a usual metric space. It has many applications in scientific
and mathematical research. Bakhtin [13], Czerwik [18] have discussed fixed point results over a metric type space very first. In recent times more
works have been done that focus on to acquire fixed points and, then further extended for coincidence, coupled coincidence points of the maps
satisfies various contraction conditions in this context. In connection they explored several applications of differential and integral equations, the
readers may refer from [15, 17, 20, 22, 27, 30, 31, 32, 38, 39, 40] and from the references provided therein. In addition, by implementing necessary
topological properties on a space and/or mappings which are either single or multi valued in ordered metric type space, several authors have been
generalized and extended the results, some of such are from [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 21, 23, 24, 25, 26, 28, 29, 33,
34, 35, 36, 37, 43], which create a natural interest in this direction. Very recently, Seshagiri Rao et al. [41, 42] investigated fixed point results in
ordered metric type spaces for the mappings satisfying generalized weak contractions involving altering distance functions. Also one can see some
important generalizations of the fixed points results in Gb-metric space and an extended fuzzy cone b-metric space by Vishal Gupta et al. [44, 45]
which will enhance the results obtained in this work.

Now, in this work for obtaining the fixed point of a map # : @ — @, we initiate a generalized contraction given below which is involving altering
distance functions $ € CT>, e ¥ and § € 6 defined in [0, +00).

QT 2, F©)) < P(C(2, @) = P(C(12, ) + MID(12, @), )
where

Qo Jo) [1+Qn. I2)| Q. Jp) Up. o)

1+Q(2, @) ’1+Q(ﬂ,fw)+9(w’]ﬂ)’g(ﬂaw)}, @

C(72,w) = max{
and

D(z,w) =min{Q(z, £ 2), Aw, fw), Aw, 7 1), Qxn, fw)}, 3

for all 2, w € @ such that » <w, # >0, 3> 1 and, (@, Q, <) is a complete partially ordered b-metric space (c.p.o.b-m.s.).
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Later, we extend the same contraction condition for a pair mappings in the same context to acquire coincidence, couple coincidence points and
a common fixed point. These results are the generalizations of [14, 15, 22, 27, 31] and some other results in the literature. The readers may refer
the necessary definitions, properties and lemmas for the present study from the works of [2, 23, 31, 36, 41, 42].

We employ the following distance functions defined in [0, +o0) all over the work in this paper.

(a). A mapping $ : [0,+00) — [0, +00) is continuously non-decreasing and $(n) =0 iff =0, for any # € [0,+00). Denote all such kind of functions by
o,

(b). A mapping § : [0, +00) — [0, +00) is such that § is lower semi-continuous and {(n) = 0 iff # = 0. Signify all of such functions by P,

(c). A mapping 6 : [0,+o0) — [0, +00) is continuous and 6(n) = 0 iff n = 0. Designate all such functions by ©.

2. Main results

This section starts with the following theorem in a metric type space.

Theorem 2.1. A non-decreasing continuous self mapping # defined on a c.p.o.b-m.s. @ with regards to < has a fixed point by satisfying contraction (1) and
for certain 7, € @ such that 72y < 7 12g.

Proof. If certain 2, € @ with 7 ) = s, then is our result. If not then s, < . 72, and then define a sequence {z,} in @ such that z,,; = 72, (n>0).
As from the property of 7, we get
Po<T=721 =222, 2 F 2= Py S e 4

If 72, = 72441 for certain n, €N, then 2, € @ is a fixed point of .# from equation (4). In contrary, for all n, 2, # 2,,, and then 2, > 7,_;,(n > 1) by
definition. As from equation (1), we get

GOy, 2041)) = POT 21, T 72)) < DOUT 12,1, F 72))

~ ~ 5)
S ACR-1> 72)) = W(C(2y_15 720)) + MOD(72,_y, 72,))
where
Q2 I 72) 1+ Q222 1. T 20 )] Q1212 I 20t) U2t I 1)
C(2y-1> 72,) = max{ 1 ; ,
+ Q72,15 724) 14+ Q2,15 F 72,) + 2, F 724-1)
Q ) )
(ﬂn—l pn)} Q( ) Q( ) (6)
Pn—1>n An—15Pn+1
=max{Q(z,, ), s Q72,1 72,) }
Pn> Pntl 1 +Q(7]n—l’7]n+l)+g(ﬂnv7]n) Pn—1>Pn
<max{Q(72,, 2y41), A72,-1, 2,)}
and
D(72_15 2,) = Min{Q(72,,_1, I 72,-1), 20> I 72,)s A 220y> I 72010 221> F 72,)} = 0. @)
From equations (5), (6) and (7), we have
1
Q(ﬂn! ﬂn+l) =Q(]ﬂn—l’j72n) < gc(ﬂn—l’ﬁn)' (8)
Suppose max{Q(z,, 72,,1), Q2,_1. 72,)} = Q(72,,, 2,41) for certain n > 1, equation (8) implies that
1
Q(ﬂn’ ﬂn+l) < gg(ﬂns A+l ), 9
which leads to a contradiction in equation (9). Thus, max{Q(z,, 2,,1). Q(2,_1. 2,)} = Q(72,_1, 72,), (n > 1) and hence the equation (8) becomes
1
Q72ys 22041) S S U2 20)- 1o

Since 0 < % < 1 and the results from [1, 6, 12, 21] suggests that {7, } is a convergent Cauchy sequence in @, as @ is complete. Therefore, 2, — n € @.
In addition from the continuity property of 7, we have

Sn= j(nEI-Poo ﬂ") = nEI-Poo jﬂ" = nEI}—loo Pt =1 (11)

this exhibits in equation (11) that 7 is a fixed point of #. []

The mapping _# need not be continuous in Theorem 2.1 as a result, we have the following theorem by implementing the condition below on @:

Let {2,} be a non-decreasing sequence in @ with 7, — 5, for some 5 € @ then
12)
72, =<n,(neN), i.e., n=sup z,.

Theorem 2.2. If condition (12) holds by @ in Theorem 2.1, then ¢ has a fixed point.

Proof. By Theorem 2.1, there is a Cauchy sequence {z,} in @ so that z, — n, for some 5 € @. Also, as a result from (12), we have z, <#,(n >0), i.e.
1 =Sup 72,,.
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Next, to show that #n =#. In contrary, 7 # n, then

Qn, Fn) [1 +Q(2,, fﬂn)] Q(72,, 5 72,) 72, I 1)
1+Q(z,.1) T4+ Q. I + QM I 12,)

C(72,,1m) = max{ »Q(72,,m)} (13)

and

D(7,,n) = min{Q(z,, 7 7,), 20, F1), 21, 7 72,), A 72,, F1n)}. 14)

Taking n — +oo in equations (13) and (14) and also from lir+n 72, =1, we get
n—-+00

ngglw C(72,,m) = max{Q(n, 7 n),0} = Q(n, Fn) (15)
and
”Eglw D(72,,n) = min{€(n, 7n),0} =0. (16)

We know that, 2, <#,Vn, and thus (1) becomes

B 12y31. I M) = BT 72, T 1) < PO 12,10 T 1))

~ ~ a7)
S P(C(72, 1)) = F(C (22, 0)) + M O(D(12,,1))-
Taking n — +oo in equation (17) and also from the equations (15) and (16), we obtain that
Q. Fn) < HQn, Fm) = F(Qn, Fn) < GQn, Fm), (18)
this is a contradiction from (18). Hence, fn=7n. [
Theorem 2.3. The mapping ,# in Theorems 2.1 & 2.2 has a unique fixed point, if @ is comparable.
Proof. Suppose that »*,@w* be any two distinct fixed points of #, thus from (1)
NS ¥, F ) < YOI p*. @) 1)
<PC(*, @) = P(C(2* ™) + MOD (" w*)),
where
Q(w™*, )1+ Q(=2*, * * B % *
S (w*, Fw*) [1+Q(n*, 7 n*)] 0 T At T Q)
1+ Q(z*, w*) 1+ Q(r*, Fo*) + Qw*, 7 2*)
Qo @) [1+ Q" 29| Qp*, p*) Qp*, @)
= Q(n* *
i R oy T A oY T M AR 20
=max{0,Q(z", w*)}
=Q(n*,w")
and
D(z", ") =min{Q(z", 7 "), Uw", F&*), A", J 2*),Qp", Fw*)} =0. (21)
Equation (21) implies that
Qp" o) =UIn", Jw )S;C(ﬂ , @), (22)
and hence from (22), we get
* * 1 * * * *
QUp*, @) < 39(72 , W) <z w"), (23)

which leads a contradiction to z* # w* in (23). Therefore, z* =w*. [
We can get the below consequence from Theorems 2.1, 2.2 & 2.3.
Corollary 2.4. The same conclusions will be obtained as from Theorems 2.1, 2.2 & 2.3 by putting /4 =0 in (1).

Corollary 2.5. By replacing $(n) =7 and Y(n)= (1 — £)n in Corollary 2.4, then the similar conclusions of Theorems 2.1-2.3 will be acquired with the
following contraction condition

Qo . Jo) [1+Qn.In)|  Qun. fr An Jo)

1+ Q2 ) T F o) + w7 22 @4

o 2 7w) < & max|

Definition 2.6. A generalized contraction of a self-map _# on @ with regards to a mapping ¢ : @ — @ is defined by

3
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QT 72, T ) < (C (2, @) = F(C (12, @) + MOD (12, ), (25)
where

Qgw. Jo) [1+Qgn.In)|  Qgn fr) UAgr. o)
1+Q(gn,gw) 1+ Qgn. o)+ Qgw, F )’

C,(gn, gw)=max{ Qgn, g}, (26)

and

D, (gn,gw)=min{Q(gzn, f n), Agw, Fw),QAgw, 7 1), g r o)}, (27)

for all 2, w €@ with gz < gw, p®, P and H 6.

Theorem 2.7. A coincidence point exists for the continuous mappings # and g defined in above Definition 2.6 satisfies condition (25) with the following
assumptions:

(a). 7 is monotone ¢-non-decreasing mapping,
(). Fac4q,

(¢). 7 and g are compatible mappings,

(). gny = JFnr for certain p, € @ and

(d). (@,Q,<) is complete.

Proof. By Theorem 2.2 [8], there exists two sequences {,},{w,} C @ such that

w, = J n,=gn,. foralln>0, (28)
for which
GR0SG 2 2GRy G Py S (29)

Now from [8], we have to show that

Qw,, w,, ) <AQw,_;,@,) (n>1), (30)

where 0< A< % From the equations (25)-(29), we have

Q@ , @, 1) = PBQT 72, T Pps1))

~ N (€20)]
S €y (72ys 2041)) = W(C g (72, 2041)) + MOD o (2, 211

where

Qg 211> T P |1 + Qg 7205 F 72,)]
L+ Q(g 2, g 22ns1)
Qg 724, F 720) UG 72 F Pui1)
L+ Qg 720, F 7ny1) + (g 2y1 F 20)
Qw,, W,y ) [1+Uw,_, w,) (32)
1+ QUw,_;, @,) ’
Qw,_,@,) Uw,_|, @,1)
1+ Qw,_;,w,, )+ Aw,, @,

C (P2 F2y1) = max

B

Qg 2y @ Pana1) }

= max{

(w1, @,)}
<max{Qw,_;,w,), A®@,, ®,,1)}
and

D, (s 2241) = Min{ Qg 72, F 72)), UG 1> I 741)s UG P> I 2)> UG 2> I 720410}

(33)
=min{Q(w,_,®w,), Uw,, w,,1), A®,,@,), Aw,_;,®,.1)} =0.

From (31), we get

Q@ @,11)) < HMax{ @,y @,), Aw,,, @,y)}) = Fmax(Qw,_;, @), A, @) (34
If0<QUw,_;,w,) <Qw,,w,,) for certain n, then equation (34) follows that

U, @,11)) < PO, @,41) — POUW,, T,41)) < AW, 1) (35)
or equivalently

dg(wn’ Wyt ) < Q(wn’ Wyt )’ (36)
which is a contradiction. Therefore, the equation (34) becomes

3w, @, 1) < Uw@,_,T,). 37)

Hence 0 <A< % from (30). According to Lemma 3.1 [28] and, from equation (30), we get

4
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lim 7pz,= nEToo g 7,41 = 4, Where u € @. (38)

n—+oo

Also by the condition (c), we get

Jim Qg (F 72,), F (¢ 72)) = 0. (39)

Moreover, by continuity of 7, ¢ we have

Jim g (7 72,) = gu Jim 7 (g72,) = . (40)
Furthermore,
%Q(fﬂ, ) SQF p, I (g 72,) + 3T (g 72), 9 (F 72)) + 3z (F 72,) g 1)- (41)

Therefore, Q(fv,guv)=0 as n — +oo in (41) and from (38)-(40). Hence the proof. []

We have the accompanying result without the continuity of ¢, 7 in hypotheses of Theorem 2.7 and @ has the below property:
A sequence {g,} € @, which is nondecreasing with liIJ'rn an,=4gn € gQ,where 4@
n—+0oo

(42)
is a closed subset of @ and g, < g2.g72 < g(gr) for n with gz, < 7 n, for somep, € @.

Theorem 2.8. If @ satisfies condition (42) in Theorem 2.7, then

(a). 7 and g have a coincidence point when ¥ and g are weakly compatible and
(b). 7, g have a common fixed point, when ¥ and ¢ are commuting at their coincidence points.

Proof. Since {w,} ={72,} ={gn,.} is a Cauchy sequence by Theorem 2.7 and hence by completeness of ¢@, lirJP T, = liI_P Pl = IH,
n—+oo n—+0oo
some y € @ as ¢@ is closed. Also, ¢z, < gu,(n>0), we obtain that

PO 12, I 1) < BC (120 1)) = F(C (72 1)) + MOD (12, 1)), (43)

where

Qgu, I [1+ Qg2 T2 Qgp,. I m) Agp,. Jw
1+ Q(g 7, g1 1+ Qg m, I +QUgp, I )
— max{Q(gu, F1),0}

=Q(gu, S ) as n— +oo,

Cg(pn,y):max{ Qg 72, g 1)}

(44)

and,

D, (72y, ) = min{Q(g 22, 7 12,), Qg p, I 1), g . 7 12,), (g 72, S 1)}
- min{Q(gu, f u),0} (45)
=0asn— +oo.

As a consequence, the equation (43) suggests that,

$ lim Q(F 72,. 7 ) < Qg . T 1) = D Qg . T 1) < B g . T ). (46)
Thus,
Jim Q7 2,7 1) < S Qg T “47)

Furthermore, the metric triangular inequality follows that

2Qgp, 1) QUi T 2) + QT s T W), 48)

If gu # #u then (47) and (48) lead to a contradiction. Therefore, gy = #u. Suppose that, gu= Fu=p, then Fp= _7(gu)=g(fu) = gp. Again from
(43) with gu=g(gu)=gp and gu=7u, gp=7p, we get

BT . F p)) < B(C,, (1, p)) = F(C (1, p)) < BT 1, F ), (49)

or equivalently,

3QF u, 7 p) QI p, Fp). (50)
If 7 # 7p, then from (50) follows a contradiction. Therefore, #u = #p = p and then #u = gp = p. Hence the result. []

Definition 2.9. Let (@, Q, <) be a partially ordered metric type space and ¢ is self-map on it. A map ¥ : @ X @ — @ is known to be a generalized
(¢, W, 0)-contraction w.r.t. g, if
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P QI (2. @), F(0,0)) < d;(Cg(ﬂ, @,0,0)) =Y (C,(n,@,0,0)+ /%5(Dg(71, w,0,0)),
for p»,w,0,0 € @ such that gpn < go, gw>go,¢>2,3>1, M >0, $e&>, y?e‘f’ and9e® and, where

Q(go. F(0.0)) [l + Qg r. (1. @)
1+Q(gr,gw)

Qg n,f(n ) QAgn, f(o,0))

1+Q(gn, F(0.0)+Qgw, F(n, ™)’

B

C, (2, @,0,0) = max{

Qg pn,gw)},

and
D, (7, w,0,0) =min{Q(g 2, 7 (7, ®)), g0, (0,0)), Ugw, 7 (7, @), 2Agn,7(0,0))}.
Theorem 2.10. The mappings .# and ¢ defined in Definition 2.9 have a coupled coincidence point if

(i). 7 and g are continuous,
(ii). 7 is mixed g-monotone and commutes with ¢ and
(iii). there exists (72,,w,) € @ X @ such that g ny < ¥ (19, @), g@y = F (@, 720) and F (@ x @) C ¢(@), where @Q is complete.

Proof. As by Theorem 2.2 [8], there are two sequences {2, }, {w,} C @ with

g Pn+1 = j(ﬂn’ wn)’ dWyp1 = j(wn’ ﬂn)’ (n > O)’
where {gz,} is nondecreasing and {gw,} is nonincreasing in @. Let 2 = z,,w = w,,0= 2,,,06 =W, in (51), we have
PG Qg 10112 72112)) = O AT (@), I (g @11)

< ¢(Cg(7‘?n’wn’7—?n+l’wn+l)) - l/I;(Cg(ﬂn’wn’ pn+l’wn+l)) + %G(Dg(ﬂn’wn’ﬁn+l’wn+l))*

here

Co (P @ Pt @) = MAX{ QUG 22 7 241> AL Pt 2 2s2) )
and,

D (72 Wps Pyt s @) = WI0{ QUG 2> G 7211)> UG P15 4 P2)s

QG 21> 2 Py 1) G 720, 4 Pny2)} = 0.

Therefore from (55) using (56) and (57), we get

B UG P12 Ps2) < PMAX{Q(G 20 @ 72001)s G i1s 2 7202) D)

= p(max{ Qg 2, 2 7241)s UL i1 2 i) )-

Also by letting 2 =w, |, @ = 2,,1.0 = 2, and, ¢ = z, in (51), we get

B U,y 1. g,42) < PMAX (gD, g,, ). gD, 1. 2T, 12)})

- u’}(max{Q(gw,,, g Wpy )’ Q(g’lnrﬁl ) gwn+2)})'

Heliyon 8 (2022) e12442

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59

It is known that max{$(;1, ), $(n2)} = ${ max{n;,n,}} for n;,n, €[0,+0). Then by adding the equations (58) and (59) together to get,

$(JKH,,) < Pp(max{Q(g 2,, ¢ 7241), UG 211> 2 P2p42)s A @@y, §0,,11), NGB 1, T 42)})

= P(max{Q(g 24 Z 241)s UG 21 s 8 P42)s LG D s § 1)y Ug B 1, 2T 32) )

here

10, = max{Q(g 2,41, 9 72p42)s AGg Ty 1, T i) }-
Let,

B, = max{Q(g 2,, Z 2n11)s UG 22n11> L Pns2), UL B, §11), UG W11, 4T py2) )

hence from equations (58)-(61), we obtain

51, <E

n—="n"

Now to claim that

M, <A,_,, (n> 1),

n—1>

here 0 < A< .
E)

(60)

(61)

(62)

(63)

(64)

Since s <1 and if 5, =11, then II, = 0 from (63) and thus (64) holds. If &, = max{Q(g2,, ¢ 2,,1). Ag®w,, ¢w,,)}, that is, £, =1I,_; then from

(63), we get IT, < A"I1;, and implies that

Qg Pys159 Puin) S A"y and, QUg@,,1, g@,40) < A",

(65)
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from Lemma 3.1 [28] that {¢g,} and {gw,} are Cauchy sequences in @. Thus, .,# and ¢ have a coincidence point from Theorem 2.2 [4]. []

Corollary 2.11. A continuous and mixed monotone mapping . : @ X @ — @ has a coupled fixed point in @, where @ is complete for (72, w,) € @ X @ with
720 = F(n,wy) and w, = 7 (w, 72,) satisfying the following contractions:

.
B QI (2. @), 7 (0,0)) £ H(C (12, ,0,0) = F(C (12, 0,0)) + MOD (12, ., 0,0)), (66)
(ii). | |
AT (2, @), 7 (0,0)) < -,y (12,,0,0) = —§(Cy ., 0,0)), M =0, (67)
where
o ) = max( Qo, F(0,0) [1 + Q. I (m.®)|  Q(p2, (2. ) U2, F(0,0))
g\ 6, 0) = Max 1+ Q2. @) T Q2. 7 (0.0) + Q. F (7. @) 68)
Qp, @)},
and
D (7., 0,0) = min{Q(z, 7 (7, ®)),Qe. 7 (0.0)). Qw, 7 (2. )),n. F(0,0))}, (69)

for p,w,0.0€Qwith p<oand w>o0,£>2 s>1and ped, P andfco.

Theorem 2.12. According to Theorem 2.10, ¥ and ¢ have a unique coupled common fixed point, if for all (y*,n*) € @ X @ so that (F(y*,n*), F(n*,v*)) is
comparable to both (¥ (n,w), (w, r)) and (F(#,m), F (72, #)).

Proof. A coupled coincidence point for # and g exists by Theorem 2.10. For uniqueness, let (2, @), (#,72) be two coupled coincidence points
of # and ¢, whence to show that gz = g# and gw = g. By the hypotheses, if for some (y*,7*) € @ X @, (F(y*,n*), F(n*,y*)) is comparable to

(F (. @), F (@, p)).
Suppose that,

(F (@), F (@, 2) < (F ™0, F(n*, ")) and

. . (70)
(F(B,m), (2, #)) < ("0, T v™).
Let y*, =y* and #*; =#* and then a point (y*|,#*,) € @ X @ so that
ar* 1 =F@ 0n"0), gn’i=F W . r), for (n21). (71)
Consequently, we have two sequences {gy*,} and {g#n*,} in @ by
27 1 =T ) g = F 0 "), (12 0). (72)

As by similar processor, we obtain the sequences {¢2,}, {¢w,} and {¢#,}, {¢.%,} in @ by letting z, = 2, wy=w and %y = #, 72 = 72 and then

a7, — F(p,w), gw,— F(w,n), gk, F(R,m), gf, > Fn, ) (nx1). (73)

Inductively, we get

(22w g®,) <(gr* o gn™y), n20. 74

Now from the contraction condition (51), we have

B 2. 7" 1) DG  Ug 2. 27" p1)) = B QI (12.@), I (7" ")
SHCY (2@ " ) = W(C (2@, 7* o)) 75)
+MOD (2, .7 0" ),
where

Qg™ F0* o™ ) [1 + Qg 2, 7 (2, @))]
1+ Q(gn,gm)
Qlgn, J (7, @) Ugr, I G n"y)
1+ Q(gn. F* . n*) + Qgw, (2, @)
=max{0,Q(g 2, 27r",)}

Cy(p,@,y" ") = max{

>

Qg n.g7r" )} (76)

=Q(gn.g7" )
and
D,(n,@,y" 0", =min{Qg 2, J (2, @), gy, F " . 1" ), g @, I (2, @),
Qg 7, F(r* "))} =0.

(77)
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The equations (75)-(77) follows that,

DQg 2. 97" 1) < P g 72,97 ) — 0 Qg 2.97" ). (78)

Also by similar argument, we have
Qg 0" 141) < P Qg g’ ,) — P Qg gn*,). 79
Therefore from the equations (75) and (79), we get
Pmax(Qg 72, g7 ) Agm, gn" 1)) < Bmax{ Qg 2, 21", g @, g0 )
- P(max{Q(g 2, gr" ). Ug@, gn" )} (80)
<Pmax(Qg 2. 27" ). Qgw@.gn* ).

which implies by ¢ that

max{Q(g 2, 27" 1), Ug @, gn” 1)} <max{Qg 2, 27" ), Qgw@, gn*,)}. (81)
From which the sequence, max{Q(g 2, gv*,), Qgw, gn*,)} is non-increasing and bounded below and hence from known result, we get
lim max{Q(gz, ¢r" ), Ugw, gn” )} =N, A=0. (82)
n—+00
As n — 400 in equation (80), we obtain that
B(A) < BA) = F(A). (83)
Consequently, (82) follows that #(A) =0 and then A =0. Thus,
Jim max{Q(g 2, 27", Qg@, gn",)} =0, (€]
which implies that,
lim Q(gn,¢r*,)=0 and lim Q(gw,gn*,)=0. (85)
n—+oco n—+o0o
As by similar process, we have
lim Q(g#,¢y*,)=0and lim Q(g.f,¢gn*,) =0. (86)
n—+oo n—+oo
Therefore from (85) and (86), we get gn =g# and gw = g . As ¥ commutes with ¢ and also g2 = #(»,w) and gw = #(w, z2) suggests that

2(gn)=g(F(n,®)=F(gn gw), g(gw)=gq(f(w,n)=JF(gw, gr). (87)
If gz =y} and gw =] then from (87), we get

2P = F(i.ny) and g(n)) = F(nf,vY). (88)

Thus, 7 and ¢ have a coupled coincidence point (v}, #7) by (88). Which results in ¢(y}) = ¢# and ¢(n}) = ¢.7. Hence, ¢(y}) =y; and ¢(}) =nj.
Let (y;,n;) be another coupled common fixed point. Then y; = ¢r; = #(v;,n;) and n; = gn; = (1}, v;). But (v;,1;) is a coupled common fixed
point for 7, ¢ then gy} =g =y and gn; = gw = n]. Therefore, yJ = gv; = gv{ =v] and n; = gn} = gn; = n}. Hence the uniqueness. []

Theorem 2.13. The unique common fixed point for # and ¢ in Theorem 2.12 exists, if g7y < gw, Or ¢y > ¢w,.

Proof. We have to show that » = w for a unique common fixed point (2, @) € @ of the the mappings ,# and g¢. If gz, < gw, then g2, < gw,, (n>0)
by induction. As by Lemma 2 [29], we have

B3 22, @) = (" szg(p, @) < i sup$(s” Q21 @,s1)
= lim_sup (s QI (2. @,). 7 (. 2,)))

< Jim sup §(Cy (72 @y @y 2,)) = Hminf §(Co (72, @ s 72,)

(89)
+ nl_§r+11w sup M O(D 4 (72, @y, @y, 72,))
<HQz. )~ lim inf G(C1 (2, @y @y 72,)
< HQz, @),
thus (89) follows a contraction. As a result we get z = w.
Also get the same conclusion, if gz, > gw,. [
Remark 2.14. If 5 = 1, the contraction condition
DT (2. @), F (0. @) < pmax{Qg 2, 20). Qg w, gw)}) — P(max{Q(g 72, 70), UAg @, gw)}) (90)
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becomes,

Q(F (n, @), (0, ™)) < p(max{g2,¢0), Agw,g®)}), (91)

as by the consequence of [27], where ¢ : [0,+00) — [0,+00) is a continuous mapping with ¢(n) < for any n > 0 as well as ¢() =0 iff » =0 and
¢ € @, y € ¥. Therefore, the results obtained in this paper are generalizing and extending the findings in [15, 22, 31, 32] and many outcomes in
the literature.

Below are some examples given based on a metric Q is continuous or discontinuous.

Example 2.15. A metric Q : @ X @ —» @, where @ = {a,b,c,d,e,f} defined as
Qp,w)=Qw,n)=0, if p=w=a,b,c,d,e,f and p =w,
Qp,w)=Qw,2)=3, if n=w=a,b,c,d,e and 2 # w,
Qn,w)=Qw,n)=12, if p=a,b,c,d and w =f,
Q(p,w)=NUw,n)=20, if »=e¢and w=f, with usual order <.
Let 7 : @ » @ be a mapping defined as fa= fb= fc=Fd=Fe=1,7f=2, $(11): g and §(n) = %, for n € [0,+0). Then 7 has a fixed point in @.

Proof. The metric is complete for s =2 and then (@, Q, <) is a c.p.o.b-m.s.. Also its clear that Q is continuous. Let 2, w € @ with 2 < w then,
Case (i). Suppose z,w € {a,b,c,d, e}, then we have Q(f n, fw) = Q(a,a) =0. Therefore

QI 2, F ) < P(C(22, @) = F(C12, ). (92)
Case (ii). Suppose 7 € {a,b,c,d,e} and w =f, then we have Q( ¥z, fw)=Q(a,b) =3 and C(f,e) =20, C(n.f) = 12, where z € {a,b,c,d}. Thus,

~ C(p2, ~ ~

P27 n, fw)) < @ =¢(C(n, w)) — W (C(n, @)). (93)

Hence the conclusion as all assumptions of Corollary 2.4 are fulfilled. []

Example 2.16. With usual order <, define a metric Q by

0 , forn=w
1 , for pn#we{0,1}
Q. m) = Jor s D 94)
2 —w|, forp,we{O,Z,E ‘n#Em>1}
2 , othercases
where @ = {0, 1, % % i%} A mapping 7 : @ — @ has a fixed point with jO:O,]% = 1;_,1’"2 1 and $(n):n, W)= 45—’7 where 7 € [0, +0).
Proof. By definition of a metric Q is discontinuous and for s = %, (@,9Q,<) is a c.p.o.b-m.s. For 2, w € @ such that z < w, then:
Case (i). Let » =0 and w = l for n> 0. Then Q(f 2, Fw)= ﬁ and C(z, )= l and C(z,w)={1,2}. Thus,

)<<

¢ ( %m;p, Jw) = §(C(n, @) - F(C(2,@)). (95)

Case (ii). Let 2 = # and w = i where m > n > 1, then

Q(fﬂ’fw)ZQ(%,L), C(p,w)zl—lorC(p,w):Z (96)
m 12n n o m
Therefore,

~ C(n, ~ ~

¢<15—29(f71,f0)) < @ =¢(C(n, @) — W (C(n, @)). (97)

Therefore, by Corollary 2.4, we have the result. []

Example 2.17. Let @ = {G/0 : [a;,a,] — [a;,a,] is continuous map} and, a metric Q : @ x @ — @ defined by

QO By = sup {[0,(n) - V(m)I*}
n€lay,az]
for every 0,0, €@, 0<a, <a, and if U; <0, then a; <T;(n) <Vy(n) < ap,n € [a;,a,]. A mapping 7 : @ — @ has a unique fixed point with
JU=2.0e0and ¢(@) =d, P(a)= 5, d € [0,+c0).

a
3

Proof. For s =2 with above metric all assumptions in Theorem 2.3 are satisfied as min(0;,0,)(x) = min{O,(1),0,(n)} is continuous. And hence,
0 € @ is the only fixed point to .#. Hence the uniqueness. []
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3. Conclusion and future works

The current study explored fixed point results of the mappings satisfies generalized weak contractions in a complete partially ordered b-metric
space. The obtained outcomes generalized and, extended some main results in the literature. Further, suitable examples are presented to support
the findings in this work.

These results can be extended further by assuming suitable topological properties on mappings as well as various ordered metric spaces like
Gb-metric spaces, extended fuzzy cone b-metric space, etc.
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