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Abstract: According to the results of industrial research, product failure time is correlated with fatigue weakness, which 
is typically produced by repeated stress variations. A double acceptance sampling strategy was presented for shortened 
life tests where the lifespan of test products follows an odd generalized exponential log-logistic distribution (OGELLD), 
according to the findings of this study. The minimum sample sizes for the first and second samples are calculated using 
a producer’s risk of 0.05 to ensure that the actual median life is greater than the specified life at the chosen consumer 
confidence level. Based on various ratios of genuine median life to stipulated life, we analyzed operational features; we 
observed that reduced producer risk at the defined level was associated with the lowest median ratios to the specified 
level. Finally, an illustration is offered to help in the grasp of the suggested framework.
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1. Introduction
In the current global business market, quality is a significant factor to gain industry appraisal. The product lifetime 

plays an important role in attracting consumers to higher quality products. Therefore, the companies are trying to 
maintain quality at all stages of the manufacturing process by using several statistical tools and techniques during the 
inspection. It minimizes products with defects being accepted. It ultimately increases consumer confidence with the 
durability of the product. Considering the cost and time associated with testing the products, inspecting all the products 
is not practicable in all scenarios. The acceptance sampling method is the most commonly utilized method for lot 
sentencing in such instances [1]. The acceptance sampling scheme aids in inspecting raw materials, in-process products, 
and completed products. It helps numerous sentencing judgments and companies improve the quality of their products. 
Acceptance sampling programs provide both suppliers and buyers with the necessary levels of security, as well as high 
acceptance probabilities for good lots and low acceptance probabilities for bad lots. A Type-I error, whose possibility is 
also described as the producer’s risk, happens when a consumer rejects a good (genuine) product that meets the specified 
life requirements. A Type-II error, whose risk is also known as the consumer’s risk, happens when a consumer purchases 
a defective (genuine) product that does not meet the requisite life conditions. The dangers linked with these two types 
of errors (rejecting genuine goods/accepting a non-genuine product) may significantly impact the decision to reject 
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or accept. Expanding the sample size is one way of lowering both the consumer’s and the producer’s risk, although it 
may result in the producer making a loss. As a result, to avoid these risks, we need to implement a practical acceptance 
sampling approach. Furthermore, to bring down experiment time, reduced life tests are usually employed.

Several studies have been conducted in the past to develop single-sample techniques based on reduced life tests in 
various statistical distributions [2]. Because there are more than the allowable number of failures during the specified 
experiment length, the experiment and lot are terminated and rejected in a single sampling plan using a shorter life test, 
as described above. Alternatively, if there are fewer failures after the trial, we will accept the entire batch of results.

Because of the ease with which the technique can be implemented, much attention has been paid to researching the 
acceptance of single sampling plans for the testing and inspection of items in a variety of sample circumstances over 
the last few decades. Many authors have created single sampling strategies for a wide range of distributions. Gupta and 
Gupta [3], Gupta [4], Kantam et al. [5], Tsai and Wu [6], Balakrishnan et al. [7], and Rao et al. [8] have all emerged 
recently.

In the field of quality control, see Duncan [9] where the normal distribution is frequently used as a statistical 
distribution, a double-sampling strategy has been reported to reduce producer risk or sample size. It has long been 
recognized that double-sampling plans can minimize sample size while also reducing producer risk in the field of 
quality control, where normal distribution is frequently utilized. Consider the case of Duncan [9], to make judgments 
concerning double sampling, it is necessary to consider the information gained through the preceding process decisions. 
Aslam [10] presented double acceptance sampling for the Rayleigh distribution based on shortened life tests, which 
he found to be effective. Aslam et al. [11, 12] proposed double acceptance sampling plans for the Weibull model and 
generic life distributions based on truncated life tests for the Weibull model and generic life distributions. Aslam and Jun 
[13] looked into the feasibility of a double acceptance sampling strategy for a generalized log-logistic distribution with 
known shape parameters. Rao [14, 15] proposed double acceptance sampling strategies based on truncated life tests 
for the Marshall-Olkin extended exponential and Marshall-Olkin extended Lomax distributions. Based on the results 
of their brief life tests, Aslam et al. [2] developed double acceptance sampling plans for Burr type - XII distribution 
percentiles. Truncated life tests in a generalized exponential distribution were used by Ramaswamy and Anburajan 
[16] to produce double acceptance sampling, which they published in 2012. Gui [17] developed a twofold acceptance 
sampling scheme based on the Maxwell distribution to reduce the time required for time-reduced life testing. Malathi 
and Muthulakshmi [18] developed a zero-one double acceptance sampling strategy for shortened life testing based on 
the Marshall-Olkin extended exponential distribution. Mahdy and Ahmed [19] discovered new distribution in designing 
of double acceptance sampling plan with the application. Musa et al. [20] developed double acceptance sampling plans 
for percentiles based on the inverse Rayleigh distribution. Hamurkaroğlu et al. [21] developed single and double-
sampling plans based on the time-truncated life tests for the compound Weibull-exponential distribution. Tripathi et 
al. [22] developed a double and group acceptance sampling plan for truncated life tests based on inverse log-logistic 
distribution. Saha et al. [23] developed single and double acceptance sampling plans for truncated life tests based on 
transmuted Rayleigh distribution. A double acceptance sampling plan for exponentiated Fréchet distribution with known 
shape parameters was developed by Sridhar et al. [24]. Saranya et al. [25] developed a design of double-sampling 
inspection plans for life tests under time censoring based on Pareto type IV distribution.

The purpose of this research is to develop double acceptance sampling strategies for shorter life testing, which is 
based on the idea that a product’s lifespan follows an odd generalized exponential log-logistic distribution (OGELLD). 
This distribution is critical when conducting a survival study. The most widely used failure criteria are zero and one, 
with lots being accepted if the first sample of the lot shows no failures and lots being rejected if there are two or more 
failures. A lot is the whole amount of a given material. The quantity of an item ordered for delivery on a given date 
or made in a single production run is referred to as the lot size. When one sample fails, a second sample is picked and 
examined for the same period as the failed sample. The consumer confidence level established for the first sample is 
used to compute the minimum sample sizes for the first and second samples. The operational factors influencing the 
genuine median life/specified life ratio need to be looked at. To lower the producer’s risk, minimum ratio values are also 
specified. Section 2 discusses OGELLD, and Section 3 describes the architecture of the proposed double-sampling plan. 
Section 4 investigates the operational characteristics of the proposed double-sampling plan. Section 5 includes case 
studies that demonstrate the recommended sampling strategy. The sixth section concludes with a synopsis of the key 
points.
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2. OGELLD
OGELLD was popularized and extensively studied by Rosaiah et al. [26]. For example, the OGELLD’s probability 

density function (PDF) and cumulative distribution function (CDF) may be found here,
Rosaiah et al. [26] popularized OGELLD and conducted in-depth research on it. PDF and CDF for the OGELLD, 

for instance, can be found here:
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where λ is the scale parameter and θ, γ are the shape parameters. When designing single sampling plans, if we take  
γ = 1, it is named odd exponential log-logistic distribution (OELLD). The shape parameters are considered to be known 
a priori in this investigation. When failure data is available, they can be approximated. 

Let us consider ( )qF t q= , the 100q-th percentile of the OGELLD of equation (2) can be obtained as: 
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In general, the mean cannot be calculated in closed form, according to equation (3), let 0
qt  be the specified value for 

tq. 
Let us consider q = 0.5, the median (50th percentile) of the OGELLD given as:

                                                                          ( )( )
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The median is proportional to the scale parameters when the two shape parameters are fixed. As a result, 
irrespective of θ for the OELLD median (γ = 1). Thus equation (2) can be expressed as:

                                                                                                                                                                                            (5)
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where m0 is the specified value of m, 
11ln(1 )q q
θγη λ = − −   and m/m0 is the median ratio of the product.

3. The design of the proposed sampling plan 
In this part, the OGELLD purposed double acceptance sampling plan is explained. Let’s say a life test is being 

conducted and will be finished sequentially. The lot will be authorized and referred to as a good one if the median 
lifetime of a product, as shown by m, can be used to describe its quality and the lifetime data supports the following null 
hypothesis. 0

0 : q qH t t≥  for median (m ≥ m0) verses alternative hypothesis 0
1 : q qH t t<  for the median (m < m0). 

In this hypothesis test, the consumer’s risk β is employed as the significance level, and the consumer’s confidence 
level is 1-β. The creation of a twofold acceptance sampling plan and its operational guidelines are as follows:

i) Take a first sample of size n1 from a lot, and count the number of non-conforming objects, d1.
ii) If d1 ≤ c1, accept the lot; otherwise, reject the lot if d1 ≥ c2.
iii) If c1 < d1 < c2, then take a second sample of size n2 and observe the number of non-conforming items, d2.



Volume 3 Issue 1|2023| 79 Digital Manufacturing Technology

iv) If d1 + d2 ≤ c2, accept the lot; otherwise, reject the lot.
The operating procedure of double acceptance sampling plan (DASP) for truncated life test [13] is proposed as 

follows: 
Step 1: The lot is accepted; if drawn a random sample of size n1 from the lot and put on the test, then see c1 or less 

failure is observed before a predetermined experiment time t0 otherwise the life test is truncated to reject the lot before 
or at t0. Suppose (c2 + 1) failures are accumulated before or at t0, where (c1 < c2).

Step 2: If the number of failures by t0 is between (c1 + 1) and c2 then draw a second sample of size n2 for life testing 
till a prescribed termination time t0. If at most c2 failures are observed from the two samples, then the lot is accepted. 
Otherwise, the lot is rejected.

The operating method for a DASP for a life test is presented below in the form of a flow chart.

                                        

Draw a random sample of size n1 and 
put on test for specified time t0 

Compute the number of 
defectives d1 d2 

If
c1 < d1 < c2 

Reject the lot Accept the lot 

Draw the second random sample of size n2 
and put on test for the same specified time t0 

Compute the number of defectives d2 

Reject the lot Accept the lot 

If d1 ≥ c2 If d1 ≤ c1

If d1 + d2 > c2 If d1 + d2 ≤ c2

Figure 1. Flow chart for the proposed DASP

The termination period should typically be fixed as a multiple of the stated life, m0 in which case t0 = am0 for a 
specified multiplier a. The proposed sampling plan could be employed based on five parameters namely (n1, n2, c1, c2, a), 
where (c1 < c2).

The binomial distribution is deemed large enough to be useful in estimating the lot acceptance probability. See, 
for instance, Stephens [27] for additional justification. The likelihood of the lot being accepted is calculated for the 
suggested twofold acceptance sampling plan by
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Here, P is the chance of an item failing earlier than t0, which is specified in equation (5). 
Since consumers prefer an acceptance sampling plan with lower acceptance numbers than the present double-

sampling plan, we have specifically discussed and are concerned about the projected double-sampling plan, also known 
as zero and one failure schemes. When a lot is approved with several test-failed products, the consumers may be 
unaware of what is happening, but it is easy to assess the quality of each item. In the zero and one failure schemes, the 
lot acceptance probability of equation (6) falls to zero and one.

                                                                      ( ) ( )1 2 1
11 1 1n n

aP p n p p − = − + −                                                                   (7)

Therefore, the minimum sample sizes n1 and n2 ensuring m ≥ m0 at confidence level 1-β can be obtained as the 
solution to the following inequality:
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where p0 is the probability in equation (5) evaluated at m = m0, as
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Given that there may be infinitely many sample sizes that meet equation (8), we want to locate them by minimizing 
the average sample number (ASN).

                                                                        ( )( )1 1 1 2 1ASN 1n P n n P= + + −                                                                   (10)

where p1 the likelihood that an application will be accepted or rejected is based on the first sample provided by 
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For c1 = 0 and c2 = 1, we have

                                                                          ( ) 1 1
1 1 2ASN 1 nn n n p p −= + −                                                                    (12)

To obtain the fewest sample sizes for the zero and one failure schemes in our suggested approach, the following 
optimization problem must be resolved:

minimize ( ) 1 1
1 1 2ASN 1 nn n n p p −= + −                                                                                                                            (13a)

subject to the constraints,
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       2 11 n n≤ ≤                                                                                                                                                                 (13c)

        n1, n2 are integers.                                                                                                                                                    (13d)
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The equations from (13a) through (13d) may be able to generate more than one feasible plan parameter 
combination. As a result, we must select the plan parameters that will result in the lowest possible ASN. For a single 
sampling strategy, the sample size may be calculated.

                                                                                     ( )01 np β− ≤                                                                               (14)

For instance, Table 1 displays the minimal sample sizes for the first and second samples under the OGELLD for a 
range of 1-β (0.75, 0.90, 0.95, 0.99), a (0.3, 0.5, 0.7, 0.9, 1.1, 1.5, 1.9), four combinations of (λ = 1.5, θ = 1.5, 2.0 and 
γ = 1.0, 1.5, 2.0) are measured. Since the experiment time is relatively brief, it can be shown that sample sizes grow 
quickly as (θ or γ) increases. When the experiment runs for a longer period, they essentially stay the same regardless of 
(θ or γ). The first and second sample sizes for the OGELLD with 1-β = 0.90, λ = 1.5 and various as a function of a are 
shown in Figures 2 and 3.

Table 1. Minimum sample sizes under OGELLD

a

(λ, θ, γ) 1-β 0.3 0.5 0.7 0.9 1.1 1.5 1.7 1.9

(1.5, 2.0, 2.0) 0.75 158,129 
(197.20)

25,18 
(30.14)

8,6 
(9.57)

4,3 
(4.63)

2,2 
(2.39)

1,1 
(1.11)

1,1 
(1.05)

1,1 
(1.02)

0.90 235,188 
(271.40)

36,28 
(41.19)

11,11 
(13.00)

6,3 
(6.34)

3,3 
(3.35)

2,1 
(2.03)

2,1 
(2.01)

1,1 
(1.02)

0.95 288,256 
(321.90)

44,38 
(48.82)

14,13 
(15.51)

7,4 
(7.32)

4,3 
(4.19)

2,1 
(2.03)

2,1 
(2.01)

1,1 
(1.02)

0.99 423,409 
(441.00)

65,53 
(67.17)

21,15 
(21.53)

10,5 
(10.13)

6,3 
(6.05)

3,1 
(3.00)

3,1 
(3.00)

2,1 
(2.00)

(1.5, 1.5, 2.0) 0.75 51,43 
(63.96)

13,12 
(16.46)

6,5 
(7.26)

4,2
 (4.38)

3,1 
(3.13)

2,1 
(2.06)

1,1 
(1.11)

1,1 
(1.07)

0.90 76,62 
(87.91)

19,19 
(22.62)

9,6
 (9.91)

5,4 
(5.54)

4,2 
(4.15)

2,2 
(2.13)

2,1 
(2.03)

2,1 
(2.01)

0.95 94,80 
(104.32)

24,22 
(26.73)

11,8 
(11.81)

6,5 
(6.47)

4,3 
(4.23)

3,1 
(3.02)

2,1 
(2.03)

2,1 
(2.01)

0.99 137,136 
(142.94)

36,26 
(36.99)

16,10 
(16.32)

9,6 
(9.16)

6,3 
(6.06)

3,3 
(3.06)

3,1 
(3.01)

2,2 
(2.02)

(1.5, 1.5, 1.5) 0.75 29,24 
(36.09)

10,9 
(12.50)

5,5 
(6.29)

4,2 
(4.36)

3,1 
(3.14)

2,1 
(2.08)

2,1 
(2.04)

1,1 
(1.10)

0.90 43,35 
(49.59)

15,12 
(17.07)

8,5 
(8.73)

5,3
(5.38)

4,2 
(4.16)

2,2 
(2.16)

2,1 
(2.04)

2,1 
(2.02)

0.95 53,45 
(58.71)

18,17 
(20.08)

10,6 
(10.55)

6,4
(6.35)

4,4 
(4.33)

3,1 
(3.03)

2,2 
(2.09)

2,1 
(2.02)

0.99 78,64 
(80.65)

27,20 
(27.75)

14,9 
(14.29)

9,5
(9.12)

6,4 
(6.09)

4,2 
(4.02)

3,2 
(3.02)

3,1 
(3.00)

(1.5, 1.5, 1.0) 0.75 15,14 
(19.10)

7,7
 (8.92)

5,3 
(5.66)

3,3 
(3.68)

3,1 
(3.15)

2,1 
(2.11)

2,1 
(2.07)

2,1 
(2.04)

0.90 23,18 
(26.25)

11,8 
(12.29)

7,4 
(7.54)

5,3 
(5.35)

4,2 
(4.18)

3,1 
(3.05)

2,2 
(2.15)

2,1 
(2.04)

0.95 28,25 
(31.11)

13,12 
(14.40)

8,7
(8.73)

6,4 
(6.31)

4,4 
(4.36)

3,2 
(3.09)

3,1 
(3.02)

2,2 
(2.09)

0.99 41,38 
(42.57)

19,19 
(19.75)

12,8 
(12.25)

8,7
 (8.22)

6,5 
(6.14)

4,3 
(4.05)

4,1 
(4.01)

3,2 
(3.02)
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First sample values vs experiment time (a) when 1-β = 0.90
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Figure 2. The first sample size against experiment time for OGELLD

                      

Second sample values vs experiment time (a) when 1-β = 0.90
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Figure 3. The second sample size against experiment time for OGELLD

4. Operating characteristics (OC)
If the genuine median is higher than the given life, the acceptance probability will increase. As a result, we must 

understand the plan’s operational features regarding the ratio between the genuine median life and the stipulated life, 
that is 0

q qt t  , i.e. 
0 .m m  A strategy will undoubtedly be more appealing if its OC increases more rapidly to one. The 

OC values for the OGELLD with of are shown in Tables 2 to 5 with 1-β (0.75, 0.90, 0.95, 0.99), a (0.3, 0.5, 0.7, 0.9, 1.1, 
1.5, 1.9), four combinations of (λ = 1.5, θ = 1.5, 2.0 and γ = 1.0, 1.5, 2.0). 
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Table 2. OC values for OGELLD with λ = 1.5, θ = γ = 2.0 

0
q qt t

1-β n1 n2 a 2 4 6 8 10 12

0.75 158 129 1.3 0.9984 0.9991 0.9990 1.0000 1.0000 1.0000

25 18 0.5 0.9922 0.9901 0.9991 1.0000 1.0000 1.0000

8 6 0.7 0.9996 0.9998 0.9999 1.0000 1.0000 1.0000

4 3 0.9 0.9977 0.9992 0.9999 1.0000 1.0000 1.0000

2 2 1.1 0.9907 0.9939 0.9999 1.0000 1.0000 1.0000

1 1 1.5 0.9381 0.9994 0.9999 1.0000 1.0000 1.0000

1 1 1.7 0.8803 0.9984 0.9999 1.0000 1.0000 1.0000

1 1 1.9 0.7987 0.9966 0.9998 1.0000 1.0000 1.0000

0.90 235 188 0.3 0.9979 0.9991 0.9990 1.0000 1.0000 1.0000

36 28 0.5 0.9989 0.9997 1.0000 1.0000 1.0000 1.0000

11 11 0.7 0.9989 0.9999 1.0000 1.0000 1.0000 1.0000

6 3 0.9 0.9932 0.9999 0.9999 1.0000 1.0000 1.0000

3 3 1.1 0.9740 0.9998 0.9999 1.0000 1.0000 1.0000

2 1 1.5 0.8451 0.9981 0.9999 1.0000 1.0000 1.0000

2 1 1.7 0.7237 0.9954 0.9998 1.0000 1.0000 1.0000

1 1 1.9 0.5767 0.9901 0.9995 0.9999 1.0000 1.0000

0.95 288 256 0.3 0.9946 0.9992 0.9999 1.0000 1.0000 1.0000

44 38 0.5 0.9919 0.9999 0.9999 1.0000 1.0000 1.0000

14 13 0.7 0.9899 0.9989 0.9997 1.0000 1.0000 1.0000

7 4 0.9 0.9932 0.9992 0.9999 0.9999 1.0000 1.0000

4 3 1.1 0.9740 0.9998 0.9999 1.0000 1.0000 1.0000

2 1 1.5 0.8451 0.9981 0.9999 1.0000 1.0000 1.0000

2 1 1.7 0.7237 0.9954 0.9998 1.0000 1.0000 1.0000

1 1 1.9 0.5767 0.9901 0.9995 0.9999 1.0000 1.0000

0.99 423 409 0.3 0.9990 0.9993 0.9999 1.0000 1.0000 1.0000

65 53 0.5 0.9991 0.9995 0.9999 1.0000 1.0000 1.0000

21 15 0.7 0.9989 0.9996 0.9999 1.0000 1.0000 1.0000

10 5 0.9 0.9932 0.9991 0.9999 1.0000 1.0000 1.0000

6 3 1.1 0.9740 0.9998 0.9999 1.0000 1.0000 1.0000

3 1 1.5 0.8451 0.9981 0.9999 1.0000 1.0000 1.0000

2 1 1.7 0.7237 0.9954 0.9998 1.0000 1.0000 1.0000

2 1 1.9 0.5767 0.9901 0.9995 0.9999 1.0000 1.0000
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Table 3. OC values for OGELLD with λ = θ = 1.5, γ = 2.0 

0
q qt t

1-β n1 n2 a 2 4 6 8 10 12

0.75 51 43 0.3 0.9867 0.9989 0.9997 0.9999 1.0000 1.0000

13 15 0.5 0.9976 0.9991 0.9997 0.9999 1.0000 1.0000

6 5 0.7 0.9975 0.9989 0.9996 1.0000 1.0000 1.0000

4 2 0.9 0.9908 0.9992 0.9999 1.0000 1.0000 1.0000

3 1 1.1 0.9759 0.9993 0.9999 1.0000 1.0000 1.0000

2 1 1.5 0.9088 0.9964 0.9996 0.9999 1.0000 1.0000

1 1 1.7 0.8541 0.9931 0.9992 0.9998 1.0000 1.0000

1 1 1.9 0.7872 0.9880 0.9985 0.9997 0.9999 1.0000

0.90 76 62 0.3 0.9920 0.9995 0.9999 1.0000 1.0000 1.0000

19 19 0.5 0.9988 0.9993 0.9999 1.0000 1.0000 1.0000

9 6 0.7 0.9926 0.9998 0.9999 1.0000 1.0000 1.0000

5 4 0.9 0.9742 0.9993 0.9999 1.0000 1.0000 1.0000

4 2 1.1 0.9352 0.9980 0.9998 1.0000 1.0000 1.0000

2 2 1.5 0.7814 0.9895 0.9998 0.9998 0.9999 1.0000

2 1 1.7 0.6738 0.9804 0.9976 0.9995 0.9999 1.0000

2 1 1.9 0.5579 0.9666 0.9956 0.9991 0.9997 0.9999

0.95 94 80 0.3 0.9940 0.9995 1.0000 1.0000 1.0000 1.0000

24 22 0.5 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000

11 8 0.7 0.9926 0.9998 1.0000 1.0000 1.0000 1.0000

6 5 0.9 0.9742 0.9993 0.9999 1.0000 1.0000 1.0000

4 3 1.1 0.9352 0.9980 0.9998 1.0000 1.0000 1.0000

3 1 1.5 0.7814 0.9895 0.9998 0.9998 0.9999 1.0000

2 1 1.7 0.6738 0.9804 0.9976 0.9995 0.9999 1.0000

2 1 1.9 0.5579 0.9666 0.9956 0.9991 0.9997 0.9999

0.99 137 136 0.3 0.9949 0.9993 1.0000 1.0000 1.0000 1.0000

36 26 0.5 0.9976 0.9996 0.9999 1.0000 1.0000 1.0000

16 10 0.7 0.9858 0.9997 0.9999 1.0000 1.0000 1.0000

9 6 0.9 0.9516 0.9987 0.9999 1.0000 1.0000 1.0000

6 3 1.1 0.8836 0.9960 0.9996 0.9999 1.0000 1.0000

3 3 1.5 0.6481 0.9798 0.9976 0.9995 0.9999 1.0000

3 1 1.7 0.5067 0.9630 0.9953 0.9990 0.9997 0.9999

2 2 1.9 0.3726 0.9381 0.9915 0.9982 0.9995 0.9998
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Table 4. OC values for OGELLD with λ = θ = γ = 1.5 

0
q qt t

1-β n1 n2 a 2 4 6 8 10 12

0.75 29 24 0.3 0.9920 0.9992 0.9999 1.0000 1.0000 1.0000

10 9 0.5 0.9953 0.9998 0.9999 1.0000 1.0000 1.0000

5 5 0.7 0.9817 0.9990 0.9998 0.9999 1.0000 1.0000

4 2 0.9 0.9523 0.9970 0.9995 0.9999 0.9999 1.0000

3 1 1.1 0.9031 0.9931 0.9987 0.9996 0.9999 0.9999

2 1 1.5 0.7477 0.9761 0.9953 0.9986 0.9995 0.9998

2 1 1.7 0.6507 0.9614 0.9922 0.9976 0.9991 0.9996

1 1 1.9 0.5498 0.9420 0.9877 0.9962 0.9985 0.9993

0.90 43 35 0.3 0.9995 0.9999 0.9990 0.9999 1.0000 1.0000

15 12 0.5 0.9953 0.9998 0.9999 1.0000 1.0000 1.0000

8 5 0.7 0.9817 0.9990 0.9998 1.0000 1.0000 1.0000

5 3 0.9 0.9523 0.9970 0.9995 0.9999 0.9999 1.0000

4 2 1.1 0.9031 0.9931 0.9987 0.9996 0.9999 0.9999

2 2 1.5 0.7477 0.9761 0.9953 0.9986 0.9995 0.9998

2 1 1.7 0.6507 0.9614 0.9922 0.9976 0.9991 0.9996

2 1 1.9 0.5498 0.9420 0.9877 0.9962 0.9985 0.9993

0.95 53 45 0.3 0.9991 0.9999 0.9999 0.9999 1.0000 1.0000

18 17 0.5 0.9924 0.9996 0.9999 0.9999 1.0000 1.0000

10 6 0.7 0.9708 0.9983 0.9997 0.9999 1.0000 1.0000

6 4 0.9 0.9261 0.9951 0.9991 0.9998 0.9999 1.0000

4 4 1.1 0.8548 0.9888 0.9979 0.9994 0.9998 0.9999

3 1 1.5 0.6505 0.9620 0.9924 0.9977 0.9991 0.9996

2 2 1.7 0.5359 0.9397 0.9873 0.9961 0.9985 0.9993

2 1 1.9 0.4259 0.9107 0.9802 0.9939 0.9976 0.9989

0.99 78 64 0.3 0.9974 0.9989 0.9999 1.0000 1.0000 1.0000

27 20 0.5 0.9867 0.9993 0.9999 1.0000 1.0000 1.0000

14 9 0.7 0.9503 0.9970 0.9995 0.9999 0.9999 1.0000

9 5 0.9 0.8787 0.9914 0.9984 0.9996 0.9998 0.9999

6 4 1.1 0.7721 0.9805 0.9963 0.9989 0.9996 0.9998

4 2 1.5 0.5039 0.9360 0.9867 0.9960 0.9984 0.9993

3 2 1.7 0.3748 0.9002 0.9780 0.9932 0.9973 0.9988

3 1 1.9 0.2649 0.8551 0.9660 0.9892 0.9957 0.9980
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Table 5. OC values for OGELLD with λ = θ = 1.5, γ = 1.0 

0
q qt t

1-β n1 n2 a 2 4 6 8 10 12

0.75 15 14 0.3 0.9954 0.9994 0.9998 0.9999 1.0000 1.0000

7 7 0.5 0.9805 0.9973 0.9992 0.9997 0.9998 0.9999

5 3 0.7 0.9512 0.9929 0.9978 0.9991 0.9995 0.9997

3 3 0.9 0.9065 0.9855 0.9954 0.9980 0.9990 0.9994

3 1 1.1 0.8479 0.9746 0.9919 0.9965 0.9982 0.9989

2 1 1.5 0.7010 0.9414 0.9805 0.9913 0.9954 0.9973

2 1 1.7 0.6203 0.9191 0.9724 0.9876 0.9935 0.9961

2 1 1.9 0.5395 0.8931 0.9626 0.9831 0.9910 0.9947

0.90 23 18 0.3 0.9926 0.9990 0.9997 0.9999 0.9999 1.0000

11 8 0.5 0.9689 0.9956 0.9987 0.9994 0.9997 0.9998

7 4 0.7 0.9243 0.9885 0.9964 0.9985 0.9992 0.9995

5 3 0.9 0.8596 0.9767 0.9926 0.9968 0.9983 0.9990

4 2 1.1 0.7790 0.9598 0.9869 0.9942 0.9970 0.9982

3 1 1.5 0.5942 0.9099 0.9689 0.9860 0.9926 0.9956

2 2 1.7 0.5017 0.8775 0.9564 0.9801 0.9894 0.9937

2 1 1.9 0.4152 0.8407 0.9415 0.9730 0.9855 0.9913

0.95 28 25 0.3 0.9911 0.9988 0.9996 0.9998 0.9999 1.0000

13 12 0.5 0.9631 0.9948 0.9984 0.9993 0.9996 0.9998

8 7 0.7 0.9109 0.9863 0.9957 0.9981 0.9990 0.9994

6 4 0.9 0.8362 0.9723 0.9911 0.9961 0.9980 0.9988

4 4 1.1 0.7446 0.9523 0.9843 0.9931 0.9964 0.9979

3 2 1.5 0.5408 0.8942 0.9631 0.9833 0.9911 0.9948

3 1 1.7 0.4425 0.8567 0.9484 0.9764 0.9873 0.9925

2 2 1.9 0.3530 0.8146 0.9310 0.9679 0.9827 0.9897

0.99 41 38 0.3 0.9856 0.9981 0.9994 0.9998 0.9999 0.9999

19 19 0.5 0.9419 0.9914 0.9974 0.9989 0.9994 0.9997

12 8 0.7 0.8644 0.9779 0.9930 0.9969 0.9984 0.9991

8 7 0.9 0.7600 0.9560 0.9856 0.9937 0.9967 0.9981

6 5 1.1 0.6407 0.9255 0.9748 0.9888 0.9941 0.9965

4 3 1.5 0.4046 0.8404 0.9419 0.9732 0.9856 0.9914

4 1 1.7 0.3047 0.7881 0.9196 0.9623 0.9796 0.9878

3 2 1.9 0.2222 0.7311 0.8937 0.9492 0.9722 0.9833

The OC values are depicted in Figure 4 as a function of the 0 .m m  when 1 – β = 0.90 and a = 0.7 for the OGELLD 
with different shape parameters (θ =1.5, 2.0 and γ =1.0, 1.5, 2.0). When the shape parameter is set to a greater value, the 
OC rises more quickly to one. It is due in part to the larger sample numbers necessary for higher shape parameters.
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Figure 4. OC values against median ratio for OGELLD 1-β = 0.90 

Imagine the producer wants to know what the lowest possible product quality will keep their risk at a specific level. 
So, by solving for the minimum median ratio 0 .m m  at the producer’s risk of α,

                                                                                        1aP α≥ −                                                                                  (15)

where Pa is supplied by equation (6) or (7) for the zero and one failure schemes, respectively, and p is given by equation 
(7) for the zero-failure scheme (5). The identical sample sizes that were previously obtained in Table 1 will be utilized 
again. To illustrate, in Table 6, the minimal median ratio for OGELLD is shown under the stipulated levels of consumer 
trust and test periods.

Table 6. Minimum median ratios to the specified life at producer’s risk for OGELLD

a

(λ, θ, γ) 1-β 0.3 0.5 0.7 0.9 1.1 1.5 1.7 1.9

(1.5, 2.0, 2.0) 0.75 1.7062 1.7489 1.8044 1.9066 1.9391 2.0812 2.3563 2.6364

0.90 1.8829 1.9350 2.0210 2.0717 2.1968 2.4582 2.7816 2.6364

0.95 1.9988 2.0576 2.1400 2.1863 2.3261 2.4582 2.7816 2.6364

0.99 2.2183 2.2624 2.3381 2.3935 2.5336 2.7233 2.7816 3.1153

(1.5, 1.5, 2.0) 0.75 2.0764 2.1603 2.2512 2.3321 2.4319 2.8969 2.6288 2.9343

0.90 2.3685 2.4988 2.5549 2.6911 2.8514 3.1918 3.2841 3.6684

0.95 2.5621 2.6831 2.7732 2.8969 2.9922 3.3201 3.2841 3.6684

0.99 2.9630 3.0120 3.1260 3.2841 3.3445 3.7750 3.7594 4.0437

(1.5, 1.5, 1.5) 0.75 2.5840 2.6752 2.7397 2.8514 2.8514 3.2960 3.7439 3.1807

0.90 3.0836 3.1696 3.2031 3.2723 3.4855 3.7286 3.7439 4.1736

0.95 3.4072 3.5398 3.5398 3.6245 3.8715 3.8880 4.2123 4.1736

0.99 4.0437 4.1169 4.1736 4.2918 4.4385 4.7642 4.8662 4.9456

(1.5, 1.5, 1.0) 0.75 4.0080 4.0437 4.0258 4.0437 3.9386 4.2517 4.8146 5.3850

0.90 5.1414 5.1414 5.0556 5.1706 5.2301 5.3850 5.7241 5.3850

0.95 6.0277 6.0680 6.0277 6.0277 6.0680 6.1501 6.1087 6.4103

0.99 7.8493 7.9872 7.5245 7.7821 7.7160 7.7160 7.2254 7.7821
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5. Use of tables 
Example 1: Assume that the lifetime of an item is determined by an OGELLD with the form parameter. The median 

lifetime of the product, with a confidence level of 0.75, must be more than or equal to 1,400 hours for the maker to 
know this. The experiment is terminated at 980 hours using the zero and one failure approaches of the double-sampling 
strategy. The minimal sample sizes needed are listed in Table 1, along with the experiment termination multiplier. It is 
appropriate to understand this sampling strategy as follows. A 980-hour test is performed on eight items first; if there are 
no failures, the lot is accepted. If the experiment fails more than once, it is terminated entirely. A second sample of size 
6 will be chosen and put through 980 hours of testing once just one failure has been attained. If the second sample does 
not contain any failures (or if both samples contain one failure), the lot will be accepted; otherwise, it will be refused.

To reduce risk, the manufacturer can be concerned about the likelihood of acceptance as quality rises. Think about 
a scenario where a manufacturer is required to know the quality level at which a risk of less than 0.05 will materialize. 
This data is shown in Table 6. The minimal ratio for both is 1.8044. Thus, the actual median duration for the product 
should be at least 2,526.16 hours.

Example 2: A range of bulbs, such as tube lights and energy-saving bulbs (ESBs), are available on the market 
to decrease the amount of electricity used. An ESB, which is the newest type of light bulb, is less expensive, uses 
less electricity, and lasts longer than regular bulbs. Assume that the producer is interested in the sample sizes for the 
truncated life test when the zero and one failure approaches of the double-sampling plan are applied. The main goal 
is to ensure that there is a 90% chance that the median lifespan will exceed 6,000 hours. The ESBs are believed to be 
followed by an OGELLD. The sample sizes needed when the experiment’s time frame is restricted to 4,200 hours are 
shown in Table 1. In terms of the median ratio to the required lifetime, Table 3 displays the OC values for the three 
quality levels. Given that this design’s ASN is 9.91, a comparison to a single sampling plan with a sample size of 
roughly 10 and an acceptable number of 0 would be useful. The OC values based on the median ratio are shown in Table 
3. We claim that the proposed plan generates more desired OC values than the single sample plan since its OC values 
rise more quickly as the quality level rises. The suggested technique requires fewer sample numbers in terms of ASN 
than the single sampling plan to reach the same OC values at higher quality levels.

6. Conclusion
To decide whether to accept or reject the offered batch, it was advised to employ a double-sampling technique 

based on a shorter life test. The objects were made to have a lifespan that matched an OGELLD, which is essential 
in system reliability studies, due to the diversity in failure rate. There was a special discussion and creation of tables 
for the double-sampling scheme’s zero and one failure methods. The number of samples needed drops significantly as 
the experiment’s duration increases, even though sample sizes for the intermediate length of the experiment are less 
sensitive to the shape parameter or the confidence level. Through the use of an example, it was demonstrated that the 
double-sampling plan is superior to the single-sample plan in terms of operational features. The developed sampling 
plans are valuable in the electronic and chemical industries. The cost of sample size selection is involved in these 
businesses. In the future, the proposed plan could be extended to repetitive sampling and double sample plans under 
neutrosophic statistics.
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