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Abstract: This paper addresses radiologists' specific diagnosis of cancer disease effectively using 

integrated framework of deep learning model. Although several existing diagnosis systems have 

been adopted by a physician, in few cases, it is not so practical to see the infected area from images 

in the normal eye. Thus, a fully integrated diagnosis framework for disease detection is proposed to 

find out the infected area from image using deep learning approaches in this paper. In this proposed 

framework, various components are designed through deep learning approaches such as detection, 

segmentation, classification etc. based on mass region. The classification technique is used to 

classify the disease as either benign or malignant. The vital part of this framework is developed by 

using a full resolution convolutional network (FrCN) that supports different stages of image 

processing, especially breast cancer disease. Different experimental evaluation is taken to perform 

on the accuracy, cross-validation tests, and the comparative testing. Since we have taken 4-fold 

evaluation, the FrCN performs with an average 98.7% Dice index, 97.8% TS/CSI coefficient, 99.1% 

overall accuracy, and 98.15% MCC. Our experiments demonstrated that the proposed diagnosis 

system performs on the deep learning approaches at each segmentation stage and classification with 

good results. 

Keywords: Deep learning; segmentation; Classification; Deep neural network; Convolutional neural 

network. 

1.   Introduction  

Now a days, breast cancer is a crucial form of cancer affecting women with high rates 

of distressed disease compared to other cancers. Breast Cancer is a leading cause of death 
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worldwide, accounting for nearly 685 000 deaths, and the most common new cases of 

breast cancer were 2.26 million cases in 2020 as per World Health Organization (WHO) 

data [1]. The percentage of women's deaths is increased worldwide due to breast cancer. 

Thus, it needs to minimize the women's death rate using early detection of this disease. 

Although different techniques are used to detect breast cancer by analyzing 

mammograms and microcalcifications, different challenges for radiologists are still taken 

to make automated detection of cancer to identify the patient as either benign or 

malignant in the diagnosis system. Several researchers have been developing 

mammography for breast cancer [2,3,4] and thoroughly analyzing the different 

mammograms [2,5,6]. But they found more false positives (FPs) and false negatives 

(FNs) after segmentation during the evaluation of different datasets. For which, their 

performance needs to improve by reducing the number of FPs and FNs. Thus, we aim to 

reduce the quantity of false data through segmentation using the proposed model. We 

emphasized on finding the region of interest (ROI) that is more effective during 

segmentation. We tried to reduce the number of FPs and FNs for different validation 

tests. Therefore, during the diagnostic process, the validation tests have been considered 

to avoid anomalies of disease. For these tests, four parameters (i.e., true positive (TP), 

true negative (TN), false positive (FP) and false-negative (FN)) are taken a crucial role to 

determine several validation tests, which are explained in the methodology and 

experimental section. Based on the above parameters, the proposed framework is 

designed the integrated schemes through mass identification, segmentation, and 

classification of cancer disease using deep learning approaches. For the above part of the 

scheme, clinical practices and the expert is needed to verify each process of the 

diagnostic system to improve the performance. Ground-level masses detect the infected 

regions based on surrounding tissues. Generally, physicians identify the suspicious 

masses by the manual or naked eye, but the proposed methods identify the disease more 

effectively as validation tests. 

The proposed integrated system contains the above three components: First part is 

considered for mass identification using creating a sub-region with ROI. This part is 

designed with the help of length (W) and width (H) of image and contour of the object in 

the image, which helps to find the region of cancer infected area of breast images. In the 

second part, the role of mass segmentation is significant to get a region of the infected 

area using the region of interest (ROI) by the disease, which needs to be extracted from 

the rest of the image for more clarification. The U-Net model is used for mass 

segmentation as well as ROI for our proposed work. It is also considered fully resolution 

convolutional network (FrCN) to get more benefits with high resolution of features of 

image maps i.e., pixel to pixel mapping with segmentation. The accuracy for this 

segmentation is improved by reducing false positive and false negative rates, which is a 

challenging task. Since the infected area is not fixed and is increased by disease with 

shapes, sizes, locations, and boundaries, the mass segmentation is analyzed through 

region growing and active contour [2, 3, 4]. In the third part, classification is designed 

with the help of the Convolutional Neural Network (CNN) model based on 

(convolutional layer + ReLU + normalization and maxpolling layer) and fully connected 

layer for class as benign and Malignant [1,7]. Since our goal is to develop an integrated 

diagnosis system through mass identification, segmentation, and classification. It focuses 

on finding out the clarity of images using deep learning approaches explained in section 

III.  
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We also use various deep learning approaches as successful deep CNN models for 

computer vision classification, including InceptionV3, DenseNet121, ResNet50, VGG16, 

and MobileNetV2 methods for comparative evaluation results. As per comparison 

models, our proposed model is better performance than the above models for 

classification.  

The contribution of this paper is summarized as follows. 

(a) The integrated framework is developed for segmentation and classification in a 

single system. 

(b) Mass segmentation and mass classification is designed using FrCN and CNN, 

respectively. 

(c) The encoder network is designed using a convolutional layer with Rectified 

Linear Unit (ReLU. It also designed the decoder network using a convolutional 

layer with a Softmax layer. 

(d) Convolutional Neural Network (CNN) based deep learning model is designed 

internally through (convolution + ReLU normalization and max pooling) and 

fully connected layer. The softmax layer is used for classification. 

(e) Evaluation matrix is considered 20 equations for not only accuracy but also 

more performance in a different direction of evaluations 

(f) For the performance comparison, the additional deep learning model has taken 

for segmentation with the help of the U-Net model to identify ROI (breast 

region) and remove the duplicates. It left the rest of the image intact for 

segmentation and different models, including the InceptionV3, DenseNet121, 

ResNet50, VGG16, and MobileNetV2 for classification using MIAS, DDSM, 

and CBIS-DDSM data sets. 

 

The various sections of this paper are represented for the entire processing of the 

whole work. The history of the proposed system or methods with relevant research work 

is described in section II. Section III describes the framework of the diagnosis system 

with a single setting to analyze deep learning approaches for processing images in the 

paper. The evaluation matrix with different equations is mentioned in section IV. Section 

V explained experimental settings, whereas different evaluation results with analysis are 

described in section VI. There is a brief discussion mentioned in section VII, and section 

VIII concluded this paper. 

2.   Related work 

Since this paper is related to the diagnosis model of disease in the healthcare system in 

a single framework setting, it needs more relevant approaches to strengthen our proposed 

model. Although many approaches are developed for image processing, few researchers 

have taken steps to create a single setting framework based on identification, 

segmentation, classification, which are described as following sub-sections. 

2.1.   Mass detection 

The deep learning-based methodologies can provide a more comprehensive 

representation of mass characteristics than other conventional methods [2,6]. Breast 

imaging is typically used in all Computer-aided design (CAD) systems; the technique of 

mass detection has proven to be effective in detecting mass concentrations of cancer [2]. 

Manual discrimination methods were most often used in these CAD systems for image 
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analysis applying CNN model with classifiers. Generally, traditional mass detection was 

utilized in the CAD systems based on deep CNN model to classify the masses as either 

benign or malignant [13]. 

2.2.   Segmentation 

In this part, the mammogram is considered a series of separate portions and scanned 

across the full breadth of the breast image to locate each portion. Next, it trained an R-

CNN model [8] to determine whether the regions were benign or malignant and expand it 

with histology of medical images. To complete the refinement of the picture search, this 

model was implemented in two stages, which is done sequentially using layers of deep R-

CNN model [9]. Mammography has provided considerable evidence showing an increase 

in the mass in X-ray images, as evidenced by using the segmentation algorithm. Despite 

the numerous advantages of simple edge detection [15], these methods possess the 

primary drawback of requiring accurate topographic or statistical contour data [16]. 

Based on feature mapping and feature sub-setting in each block, VGG-16 feature maps 

designed the group feature minimization. At the same time, they can achieve size 

reduction, removal of duplication, and acceptable computation costs [19]. Thus, the level 

of detail in the resulting feature map will be proportional to the amount of subsampling 

and maximum pooling used in the algorithm. 

The Fully Convolutional Network (or the FCN) is one of the CNN models used in 

most segmentation applications. A full-semantic segmentation for pixel-to-pixel semantic 

segmentation was put forth by [18]. It is also used with a Gaussian mixture classifier 

(GMC) while this algorithm performs the segmentation task. For DDSM-BCRP and 

INBreast, the mass-enhancing approach yielded Dice indices resulting 87% and 88% (the 

DDSM-BCRP [20] and INbreast [14] datasets) respectively. A second is an iterative 

algorithm that eliminates a sequence of unpredictable or random class assignments [16]. 

Finally, the Chan-Vese active contour model was also used to increase the segmentation 

results [11, 12].  

Recently, Negi et al., [9] have used the hybrid model Wasserstein Generative 

Adversarial Network Residual-Dilated-Attention-Gate-UNet (WGAN-RDA-UNET) for 

segmenting the tumor in Breast Ultrasound images. The GAN model comprises two 

modules: generator and discriminator. Residual-Dilated-Attention-Gate-UNet (RDAU-

NET) is used as the generator, which serves as a segmentation module, and a CNN 

classifier is employed as the discriminator. It has limitations of results compare to other 

models. Similarly, Zhuang et al., [10] had proposed a modified U-Net model named GRA 

U-Net to assist specialists in acceptably ascertaining a tumor in an ultrasound image for 

nipple segmentation. Bhuyan et al., [44] also designed for segmentation and classification 

to test COVID-19 disease. Further, the feature analysis of image data and its privacy can 

be considered [26, 39]. Singh et al., have designed a conditional Generative Adversarial 

Network (cGAN) which help to make segmentation of a breast tumor within a region of 

interest (ROI) in a mammogram. This model insight learning to identify the tumor area 

and form a binary mask that outlines it [48].  

2.3.   Classification 

Different models on breast cancer detection, segmentation, and classification have 

been published [32,33,34]. Generally, classification depends on segmentation. If 

segmentation is adequately designed, the performance will be good for classification. 
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Few authors have developed breast cancer detection using deep learning approaches 

[28,29,31] from single or multi-images or mammography. In [30], authors have 

developed cloud computing-based breast cancer diagnosis using Extreme Learning 

Machine-based Diagnostics. Further, few authors have developed the technology based 

on the analysis of IoT, cybersecurity, and Blockchain [45] and determined the 

performance of technology as [46]. Although few authors have developed their own 

technology to determine the health information based on analysis of several case study 

like [47] with the help of wireless service prototype model. Since our aim to detect the 

cancer disease, the related work, we have analyzed and found limitations which are given 

below. 

Different authors have developed their models and methods for detecting breast cancer 

using image processing, we found the limitation of the above model in a single setting 

with varying performance. For example, they considered common confusion matrices 

such as Sensitivity, precision, Accuracy, F1-score, etc., and lack of diagnosis components 

in a single setting framework. Thus, we proposed a single setting framework with all 

components of the diagnosis model such as mass identification, segmentation, 

classification, quantification, statistical evaluation, and comparison model. Thus, the 

quality of images improved by using these systems to enhance human judgment, and 

make them more legible and understandable to the computer, making them more useful 

for later processing. 
 

3.   Framework for Diagnosis System  

3.1.   Traditional Deep Learning Architecture – Convolutional Neural Network 

(CNN) 

The Convolutional Neural Network (CNN) model is the most popular deep learning 

architecture due to its deep learning similarities to conventional neural networks. It 

receives an image as input instead of one extensive network (i.e., Neural Network (NN)) 

as shown in Fig. 1(a). The CNN comprises a series of layers: a convolutional layer, 

Rectified linear unit (ReLU) layer, pooling layer, or fully-connected layer in Fig. 1(b). 

 

 
Fig. 1. Traditional deep learning architecture as [35] 

 

The ReLU layer computes the value of the max function and reduce overfitting by 

reducing the spatial dimensionality of the image to an invariant scale. Because, all 
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neurons in the preceding layer are connected to those in the next layer. A fully connected 

layer is also known as the hidden layers of traditional CNN which generate small patches 

of equal size of input image. In CNN, the center pixel of the patch is called the 'center 

pixel.' Despite the inefficiency, applying such an approach is effective, as the overlapping 

features of the sliding patches are not re-used, causing spatial information to be lost in the 

image. The transposed convolutional layers are used instead of fully connected layers, as 

shown in Fig. 1(c). The systems and techniques are designed to classify breast cancer 

patients in the full functionality of a diagnosis system, including three diagnosis 

categories such as identification, segmentation, and classification, all in one setting. The 

work processing flow on infected object detection is mentioned in Fig. 2(a) and 2 (b). 

 

Schematic diagram of the  proposed Diagnosis system

Digital Image

Prepocessing

Mass Detection

Mass ROIs

Mass Segmentation

Mass Classification by DBN

Benign Malignant

     
Fig. 2(a). Process of the image to classify                               Fig. 2 (b). Different stages of proposed 

cancer disease by proposed diagnosis system                        diagnosis system using deep learning to segment       

                                                                            and classify breast cancer masses. 
 

In Fig. 2(a), the flow of work is considered for the whole diagnosis system. Initially, 

the system is considered for taking the digital image (i.e., cancer disease image). It is pre-

processed for the whole image for the suspected area of the image where breast cancer 

can be suspected. After getting the suspected area, the image is ready for mass detection 

or identification, generating the region of interests (ROIs). The remaining part, like 

segmentation and classification, is designed in Fig.2 (b). 

In the first category, the naked eye obtains an automatic mass identification, which is 

used to process the image for the next step based on deep learning approaches. In the 

second category, an FrCN technique-based learning is proposed for mass segmentation. 

In the third category, we suggest an automated mass classification system that integrates 

different parts of the CNN model to classify the disease. The design of the proposed 

diagnosis scheme is shown in Fig. 4. 

3.2.   Creation of Sub-Region 

The process for dividing the ROI into non-overlapping sub-regions is considered in 

this section. The fixed search area to find the masses is xs, ys, xd, and yd (where xs & xd 

are first and second non-zero abscissa, ys & yd are first and second non-zero ordinates). 

Here, W = xd − xs  and H = yd − ys define the search area's length and width, especially 

the rectangular area for segmentation. To conduct a rectangular search using a sliding 

window with W ≥ w and H ≥ h. For segmentation, it performs the following procedures. 

In the first step, it creates a rectangular pursuing ground as [36]. The method finds results 

within the rectangular searching area (W × H). Thus, algorithm 1 is developed for ROI as 

follows.  
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……………………………………………………………… 

 Algorithm 1: Region of Interest identification  

……………………………………………………………… 

1 Input: Mammography I  

2 Output: Region of interest area R  

3 For k = 1 to P do  

4 Create the length with first and the last nonzero pixel xs , xd .  

5 End for 

6 For k = 1 to Q do  

7 Create the width with first and the last nonzero pixel ys , yd .  

8 End for  

9 Create the area for a rectangle R by the coordinates (xs, xd ) and (ys, yd ).  

10 Return R.  

…………………………………………………………… 

Here, the sliding window (w × h) is transferred with a certain size, negotiating the 

probing area deprived of the ROI boundary trip. Thus, the ROI generates overlapping 

sub-regions with the same size (w × h), which assists in selecting subsequent features. 

For the sub-region, we have taken the fixed size of the sliding window as 48 × 48, and the 

searching step size is 48. At last, the N non-overlapping sub-regions (s1,s2, · · · ,sN ) [36] 

are divided by ROI in this paper. 

3.3.   Data enhancement and transfer learning 

Data augmentation is an increasingly common approach proposed for dealing with this 

model, where pre-processed data is transferred to a new system. We have rotated the 

initial mammograms eight times by angle and manipulated their shape using different 

angles. That yields 880 mammograms from the 110 original mammograms considered all 

augmented mammograms, with 280 benign and 600 malignant cases used for 

experiments. There are two different ways to initialize deep learning models: a method 

known as random initialization and a process known as transfer learning [11,20,21]. 

Instead of using raw, unlabeled images to fine-tune deep models such as ImageNet [22]. 

The models are then retrained fine-tuned with an augmented image dataset, such as 

mammograms [5,6,11,21]. The best use of transfer learning for image processing in the 

second approach is treating breast cancer diagnosis using diagnosis systems [5,6,11,13]. 

Based on the sub-region and enhancement of the image, the image is processed for 

segmentation. Thus, the infected area of the breast image is explained in the next section. 

3.4.   FrCN for the mass segmentation 

If the mass is expanded in the mass of infection, the area of infection will be highly 

dense. Once an image has been centered over a contaminated region, the naked eye can 

see the image. Then, it is sent to the next stage (mass segmentation) or on its way, which 

is briefly referred to as expanded. In general, segmentation is a separate technique done 

to separate a region of interest (ROI) from the context of an image. There are many 

methods for improving contrast in the image and elevating the masses, also allowing their 

homogeneity to be more easily distinguishable [9,10,11]. Much initial training has 

revealed the SegNet and U-Net for pixel-to-pixel segmentation, resulting in higher 

segmentation accuracy comparing to existing approaches [17]. With this resolution 

reduction in features, the extent of the feature maps is reduced. On the other hand, 
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segmentation models using multiple max-pooling and subsampling layers in their encoder 

networks are produced in these models with their decoder networks. Instead of reducing 

the feature map sizes in the decoder models, the "up-sampling" and "deconvolution" 

layers are applied to extend the number of training parameters. The expanded FrCN deep 

learning model is suggested in this paper, based on this mass segmentation method. 

Because of this, the encoder's low-level deeper function maps using convolution layers, 

and the encoder's full resolution is kept intact, as fig. 3 with the formation of a pattern 

appears in the form FrCN. The proposed deep learning segmentation-based FrCN model 

is designed to handle all the mathematical processing and needed pixel-to-pixel 

segmentation. The results in a network that better represents reality [13]. We can handle 

the segmentation task with full resolution and a competitive computational time with this 

complete model.   
 

  
Fig. 3. A full resolution convolutional network (FrCN) 

model for the mass segmentation stage. (a) Detected 

ROI on the original mammogram with its ground truth, 
(b) detected ROI (i.e., input mass) with highlighted 

ground truth (red), (c) output segmented map of input 
mass, and (d) segmented output mass.  

Fig. 4. Convolutional Neural Network (CNN) based 
deep learning model for the mass classification stage. 

 

3.5.   U-Net Model 

The U-Net model is the most widely applied image segmentation model. We 

considered a U-Net model suggested as [40,41,42], which was applied to biomedical 

image segmentation. A wavelet-based process was applied to enhance the frequency of 

spatial pictures, and the area of interest (ROI) was manually extracted using this 

technique. Using the segmentation technique, S. Duraisamy et al. [42] extracted the 

contour of the calcify area from the image. Thus, we considered the modified 

segmentation of the U-Net model applied to the Breast ROC analysis, where it removed 

the unwanted regions. 

3.6.   Segmentation networks 

This is critical for making the diagnosis of breast cancer early. Segmentation could be 

seen as a classification task where one classifies each pixel in an image dataset into two 

separate groups: those with a specified either ROI (breast region) or those without 

background. Using the modified U-Net model, our mammography images are segmented 

based on the U-Net approach. U-Net helps to create modified segmentation based on the 

encoder and decoder networks. This lowermost layer of the U-Net network processes the 

decoder information. In the decoder section, features at a higher resolution are extracted 

from the encoder section. After this, a skip occurs, and delicate segment structures are 
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generated. Instead of rectified linear unit (ReLU) and standardization of batch, leaky 

ReLU and normalization of the instance are used. 

3.7.    CNN for mass classification 

We use a classification step that depends entirely on others, such as segmentation and 

feature extraction because classification is challenging. Typically, a modern CNN has 

one or more convolutional layers based on stacked inputs, processed by one or more fully 

connected (FC) layers to perform well classification. Solving the problem of mass 

classification, AlexNet (i.e., ConvNet [21]) is used to simplify the classification of the 

segmented masses. In this model, Deep feature maps are formulated with the addition of 

three subsequent convolution layers based on convolution + ReLU+ normalization and 

max-pooling; then, Deep feature reduction is modeled and implemented with max-

pooling followed by ReLU. Two layers are taken for fully connected (FC) layers, as 

shown in Fig. 4. 

In deep feature maps, first and second convolution layers, there are (combine) 20 and 

64 filters with a linear scale of 5×5 and (combined) second-stage length of 32. The third, 

fourth, fifth, and sixth convolution layers, also known as third- and fourth-order filters, 

use 512 filter scales of 256; the sixth uses 1024 filter scales of 1024. As illustrated in Fig. 

4, a non-overlapping max-pooling involves a size of 2×2 and is used to expand the sub-

sample by a factor 2 from the original input patch size. This model is also designed 

through [27].  It is less costly and would only be required if the number of functional 

systems is globally expanded. Then, the second set of 1024 and 4096 nodes is built from 

the two FC layers. This step applies a probabilistic decision logic to the logistic 

regression layer, and two Softmax nodes are then used to differentiate between benign 

and malignant diagnoses. Except for the last layer, the activation function of ReLU 

(Rectified Linear Unit) is used. Rather than using ordinary sigmoid and tanh activation 

functions, ReLU activation is used in deep models since it has a high value of the ReLU's 

activation function. It would take a longer to achieve with excellent training [21]. 

3.8.   CNN based convolution layer 

In-depth features are extracted from the ROI sub-regions using CNNs in this research 

as [36]. Figure 4 illustrates the design of a CNN network built from 7 successive layers, 

with three convolutional layers, three max-pooling layers, and one fully connected layer. 

CNN's input is a 48 × 48 sub-region image that was previously captured from other 

stages. First, the 48×48×3 input images are filtered with 12 kernels of size 9×9×3. Next, 

the 12 resulting images are down sampled to size 40×40×12. The form of a convolution 

is defined as Eq. (1). 

 

             (1) 

 

Where Wk,l contains kth kernel and bk,l represents the bias of kth layer, and (u,v) in length 

and width. It considered the tanh that is used to define the activation value's range [−1, 1]. 

Thus, the output function can be defined as Eq. (2). 

 

Outputk (i,j) = tanh (Convk (i,j))                                   (2) 
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 A max-pooling layer is connected to the first convolution layer's output. For obtaining 

the output with size 2 × 2 × 6, the next and the third convolution/max-pooling layers are 

connected. For this clustering analysis, the fully-connected layer has 2 × 2 × 6 = 24 

neurons, which are the features. 

3.9.   Additional Deep learning models 

Various methods are considered from [38] in this paper for comparative performance. 

We have taken the most successful deep CNN classification methods in the computer 

vision field, including InceptionV3, DenseNet121, ResNet50, VGG16, and MobileNetV2 

models. It must include Certain parameters on the mammography dataset to begin the 

fine-tuning process as following methods.  

 

(i) InceptionV3: The ImageNet is used to train the InceptionV3 model. With this design, 

the computing ability of the network is increased. The rate is increased to 10-4, and the 

number of iterations is also increased to 106 in our proposed work. 

(ii)DenseNet: Dense CNN (DenseNet121) is a dense feed forward neural network with 

full connectivity. Every layer in DenseNet121 has a different function map assigned. 

The next layer is fed from the previous layer's character map. Also, with DenseNet121, 

fewer parameters are required. Also, the number of iterations and the iteration rate are 

increased to 105 and reduced to 10-2. The epoch number is modified to 80. 

(iii)ResNet-50: This is a pre-trained model that uses the ImageNet. The ResNet50 skips a 

layer or uses more complex routing to handle gradient vanishing difficulty. The most 

significant benefit of ResNet50 is its ability to be optimized quickly. Instead of the 

traditional gradient descent, the ResNet50 model uses ReLu, a different kind of 

nonlinear activation function. Forward and backward propagation methods are utilized 

with the ResNet50. The iteration count and the iteration rate are set to 104 and 10-3, and 

the epoch count is 130. 

(iv)VGG16: The AlexNet has its architecture updated to VGG16, which has an additional 

layer. When more layers are included in the model, the generalization is proportional to 

the number of layers. While the benefits of VGG16 are in the use of only 3 x 3 

convolutional filters, the drawback is that it can have difficulty handling more complex 

structures. For re-training the VGG16 model, 105 iterations and 10-4 are required, while 

the number of epochs is 80. 

(v)MobileNetV2: The MobileNetV2 has two blocks: The residual block has a stride of 1, 

while the downsizing block has a stride of 2. Each block has three layers. ReLU is 

applied to the first layer, and depth-wise convolution is used for the second layer. Next, 

a 3rd-layer convolution with a single 1 x 1 nonlinearity. Each iteration is set to a value 

of 107 with a maximum number of iterations, and a rate of 10-5, with a minimum 

number of the epochs 160. 

4.   EVALUATION MATRIX 

When deep learning applies to image processing, precisely the solution for the image 

classification problem, a confusion matrix is considered to obtain the accuracy of the 

object from images or videos. Moreover, it is assumed to be a two-dimensional 

contingency table based on "actual" and "predicted" and its variables. An expanded 

confusion matrix is created by defining terms and tallying their values in two columns: 

predictors that identify real issue causes, where the issue is detected as real and false. The 
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signal identifies the real issue and those that are misdiagnosed as false positives. The 

classification figures give the comparison an idea of how they compare to the class and 

expand on a few measurements, such as calculating correct scores on standard tests 

(accuracy). The above approach to validation testing is done by applying various 

equations to actual parameters, such as TP, TN, FP and FN.  

In our model, the proposed diagnosis method is processed by two stages with 

precise analysis, starting with segmentation assessment. To determine the overall 

harmonic mean, we have used an unbalanced dataset, which means we used a dataset 

with data points (because of our emphasis on precision/sensitivity for Dice similarity 

coefficient or F1-score) to work with Matthew’s correlation coefficient (MCC). For 

expanding on the preceding statement, it is stated that a score of 1 indicates the best 

precision and sensitivity; otherwise, 0 indicates worst measurements. The sensitivity, 

precision, overall accuracy, and Dice coefficient are all employed in the test of the 

proposed segmentation system to see if the number of graphs belongs to the different 

folds. The parameters for all of these metrics are defined as follows, according to the 

following description. The following equations for the evaluation matrix is considered as 

[37]. Although many authors are developed their model using few equations from the 

following equations. Still, we tried to use all the following equations for the proposed 

model to make more precise and well performance. The reader can refer to [37] for more 

clarification about the following equations. 

 

Sensitivity/Recall/True Positive Rate (TPR) 

 =   =     = 1-FNR                                  (3) 

Specificity/Selectivity/True Negative Rate (TNR)  

=   = 1-FPR                      (4) 

Precision/Positive Predictive Value (PPV) 

 =   =1-FDR                          (5) 

Negative Predictive Value (NPV)=   = 1-FOR                                         (6)      

Miss Rate/False Negative Rate (FNR) 

 =   =   =1-TPR                                                                     (7) 

Fall-out/False Positive Rate (FPR) 

=  = = 1-TNR                                                                      (8) 

False Discovery Rate (FDR)=   = 1-PPV                          (9) 

False Omission Rate (FOR)=  =1 –NPV                   (10) 

Prevalence Threshold (PT)=     (11) 

Threat score (TS)/Critical Success Index (CSI)/TS 

 =           (12) 

Accuracy (ACC)=  =      (13) 
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Balanced Accuracy (BA)=      (14)  

F1 Score (Dice) =  2*  =     (15) 

Matthews correlation coefficient (MCC) 

=     (16) 

Fowlkess-Mallows index (FM) 

 =  =     (17)  

Informedness or Bookmarker informedness (BM) 

= TPR +TNR – 1        (18)         

Markedness (MK)/ Delta P=MK = PPV +NPV – 1     (19)      

Positive likelihood ratio (LR+)      =       (20)  

Negative likelihood ratio (LR-)    =         (21) 

Diagnostic odds ratio (DOR)   =        (22)   

IoU =                                                                                                             (23)     

DC =                                                                                                          (24) 

 

Each equation is provided by TP, TN, FP, and FN, which are represented per 

pixel to represent as their quantity. For deriving all of these parameters, the confusion 

matrix is used. Building a perfect segmentation, we must ensure high sensitivity and 

precision. We must, therefore, accurately detect all the masses and tissues in the 

surrounding region. Ground-truth regions are used as an approximation of their 

corresponding predicted regions. The Dice (F1-Score) and Jaccard (number of FP pixels 

in expected regions) are considered the main constituents to determine ground truth 

regions for the test. In the event of problems with the ground-truth data, the MCC is a 

valuable method for determining how well the segmented mass pixels correlate with it. 

Another benefit of providing ROC curves with AUC and a tradeoff between sensitivity 

and precision is to evaluate the segmentation process. Segmentation training expands its 

taxonomy by increasing image classification, which uses a new range of classification, or 

sensitivity, by boosting the quality curve with AUC, by developing ROC and F1-scores 

rather than developing a single-pixel ROC curve for each segment [1,2,5,11]. 

5.   EXPERIMENTAL SETTINGS  

5.1.   Dataset 

For experiment, the proposed methods for diagnosis is applied on the breast dataset's 

from INBreast database [14], particularly for accuracy assessments in addition to the 

methodology and simulations. It contains 400 radiograms/mammograms (all together, 

benign and malignant) and images of both the MLO and the imaging screens or CC of 

110 women patients as malignant and non-malignant mammograms. Thus, for 

experimentation, two kinds of data sets are selected: 96 for test and 400 for training. The 
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performance is done on the mass from the mammograms. Another on the sum of the 

masses of the scanning results using the data, there were 110 in total using Breast 

Imaging Reporting, and Data System (BI-RADS) provided by the loses disease which 

illustrates the efficiency of the system (BI-RADS). Further, we considered the number of 

breast images included in the MIAS, DDSM, and CBIS-DDSM datasets and utilize the 

approaches suggested in [44], which help in comparison evaluation as per the proposed 

model. We considered 496, 534, 302, and 300 for INBreast, DDSM, MIAS, and CBIS-

DDSM datasets, respectively for our experiments. In all experiments, we considered 400 

for testing data set and 96 for training data set. 

5.2.   Hardware and software supported tools 

All tests are conducted on a Personal Computer (PC) with software and hardware 

specifications such as (a) An Intel Core i7 CPU with 16 GB of RAM, (b) Python 3.0.7 on 

a Ubuntu 16.04 OS for implementation of diagnosis system. The evaluation of deep 

segmentation was carried out using Theano [23] and Keras [24] deep learning libraries, 

the model that integrates different types inputs or multiple inputs is generated, while the 

models for identifying and classifying input data are implemented with Tensorflow [25]. 

5.3.   Experimental settings for identification of breast cancer image 

A step-by-step analysis of the system efficiency uses the INBreast database [18]. This 

experiment considers 4-fold cross-validation to conduct multiple tests for each stage to 

ensure each mammogram gets checked in the same way, with the training, validation, and 

test datasets created by stratified partitioning to ensure no bias error. In all experiments, 

two kinds of data sets are considered for both benign and malignant as 400 for testing 

data set and 96 for training data set. 

 

 
(a)                (b)                   (c)                      (d) 

Fig. 5. Mass detection using YOLO technique on the test images of INbreast dataset. (a) and (b) show the 

detected ROIs (i.e., masses) for benign cases, while (c), and (d) for malignant cases. Detected ROI is 

superimposed on the original images: benign, malignant (red), and ground truth (red).  

 

Sometimes, an unbalanced training dataset creates bias errors for all segmentation and 

classification deep learning models during the training phase. So, it utilizes the following 

conditions. First, the training set is shuffled through a mini-batch to ensure each image is 

used only once as defined in [18]. Another noteworthy aspect of these studies is that they 

utilized a loss function (weighted cross-entropy) to determine the parameters when a deep 

model is under training. The above data illustrates that the two views of mammograms 

(i.e., MLO and CC) in the INbreaset dataset are found with dissimilar image sizes [14]. In 

addition, all images are resized to 256×256. Once all images have been normalized to the 

range of [0,1], they all get the same image property. In this analysis, we determine image 

having any suspicious infection or not. The YOLO techniques of the image is detected as 

shown in Fig.5. If any subspinous area is found, then the image is processed for testing 

through segmentation, which is explained in the next section.  
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5.4.   Experimental settings for mass segmentation via FrCN 

    When it determines the object's mass with a segmentation process, only those 

masses have been correctly measured for use. At the same time, all those that have been 

wrongly reported are now gone. Training all these complicated neural network models 

with a learning rate acceleration strategy allows all of them to be trained correctly. This 

will continue concurrently with the parameter expansion process. Several iterations of 

mini-batches are also being applied to pick out the models' parameters using training and 

validation datasets through a cross-entropy loss function. When it's possible, dropped 

down after the first convolution layer and the Dropout feature is activated, then images 

appear to have 0.5 less dense (or be expanded) in Fig. 3 

5.5.   Experimental settings for mass classifications via CNN 

Different segmented masses are taken to resize to 50×50 by using a bicubic 

interpolation [9,10,11,13,16]. The masses are all sent to the CNN in the final image, each 

ending up in the classification stage. For a simple comparison, we use the segmentation 

without the diagnosis systems, and then for the real-world use, we employ the medical 

diagnosis systems. Going through a CNN is especially important in the latter, which 

causes the masses to be automatically classified directly and sent to the subsequent 

lower-expanded segments to reduce bias. In the above case, the mass fragments are 

divided into two halves and then placed into the CNN's classification stages. The 

classification of the framework is consistent, ranging from the parameters to the design to 

the classifier itself. In a batch training system, the weight decay regulates the learning 

rate in proportion to the amount of data that has been passed, with the weight decay for 

batches of data passing being 0.5. However, the number of epochs is set to 100, the same 

as the scale of the mini-batches are 100 epochs. A 0.4% undetected dropout rate on fully 

connected layers is both useful for accelerating training but also prevents overfitting 

[9,18]. 

6.   Results And Its Analysis 

The above setting evaluates the considered data for mass segmentation, mass 

classification, quantifying evaluation, and comparing results as follows. The 

classification and segmentation accuracy of breast cancer images are explained based on 

end-to-end training models experimented in this paper. Based on the validation matrix, 

different equations are considered for the above evaluation. Initially, it considered Table 

1 to obtain true and false quantities of benign and malignant based on four-fold cross-

validation. 

 
Table 1. Quantity of true and false of benign and Malignant over 4-fold cross-validation via deep learning 

approaches of the breast caner dataset. 

Fold Test Benign Malignant Total Accuracy 

 True False True False True False  
1st fold 163 2 233 2 396 4  

 98.78% 1.22% 99.15% 0.85% 99.0% 1.00% 99.0 
2nd fold 163 2 234 1 397 3  

 98.80 1.2 99.60 0.4 99.25 0.75 99.2 

3rd fold 164 1 233 2 397 3  
 99.4 0.6 99.15% 0.85% 99.25 0.75 99.2 

4th fold 164 1 232 3 396 4  
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 99.4 0.6 98.72 1.28 99.0 1.0 99.0 

6.1 Mass segmentation results 

During the segmentation, falsely identified breast cancer masses are removed 

from each test fold in the segmentation process. The several outputs of mass 

segmentation of the proposed FrCN are specified in Table 2. The findings of these testing 

are quantified from the degree of analysis on the same set of mass. The complete mass 

segmentation process is performed at a single resolution of the original image. All 

measurements are taken for each pixel in the segmented maps (i.e., input ROI). 

To put it another way, Table 2 shows that FrCN performs with an average 

98.7% Dice index, 97.8% TS/CSI coefficient, 99.1% overall accuracy, and 98.15% MCC. 

 
Table 2. FrCN based segmentation on 4-fold test data set 

1st 
Fo

ld 

TPR TNR PPV NPV FNR FPR FDR FOR PT TS/CSI 

0.988 0.991 0.988 0.991 0.012 0.008 0.012 0.012 0.98 0.976 
ACC BA F1 MCC FM BM MK LR+ LR- DOR 

0.99 0.99 0.988 0.979 0.988 0.979 1.979 116.08 0.01 9515.1 

2nd 
Fo

ld 
 

TPR TNR PPV NPV FNR FPR FDR FOR PT TS/CSI 

0.993 0.991 0.987 0.995 0.006 0.008 0.012 0.004 0.09 0.981 

ACC  BA F1 MCC FM BM MK LR+ LR- DOR 

0.992 0.992 0.990   0.984 0.989 0.984 0.982 124.12 0.01 20687.
5 

3rd 

Fo
ld 

 

TPR TNR PPV NPV FNR FPR FDR FOR PT TS/CSI 

0.987 0.995 0.993 0.991 0.012 0.004 0.006 0.008 0.06 0.982 
ACC BA F1 MCC FM BM MK  LR+ LR- DOR 

0.992 0.991 0.990 0.984 0.989 0.982 0.984 246.75 0.01 20562.
5 

4th 

Fo
ld 

 

TPR TNR PPV NPV FNR FPR FDR FOR PT TS/CSI 

0.982 0.995 0.993 0.987 0.017 0.004 0.006 0.012 0.06 0.976 

ACC BA F1 MCC FM BM  MK  LR+ LR- DOR 
0.99 0.988 0.98 0.979 0.987 0.977 0.98 245.5 0.01

7 
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Furthermore, FrCN is better in 2nd and 3rd fold compare to other fold demonstrated by 

the ACC value obtained when all of the test samples were included.  

 

  
(a) (b) 

Fig. 6. (a) fully convolutional network (FCN) (b) full resolution convolutional network (FrCN) of the 

segmentation performance with contours-based ground truth (red) with FrCN.  

 

The ACC of FrCN is 99.2 percent in 2nd and 3rdfold, which means that the efficiency of 

FrCN is 0.2 higher than the lower fold. The accuracy is better if the quantity of false is 

less in Benign. Based on this complement, the Dice index has considered mass accuracy 

for each image which is compared shown in Fig 6. In Fig 6, the contour-based ground 

truth is taken to identify the infected area by cancer. Here, it is easily identifying the 

difference between FCN and FrCN by ground truth of image or region of interest (ROI). 
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6.2 Mass classification results 

As defined in the previous segmentation stages, all segmented masses reach the 

classification stage sequentially, one mass after another. In terms of different output, 

classification evaluation includes various metrics such as TPR, TNR, overall accuracy, 

F1-Score, MCC, etc. At the same time, a diagnosis with segmentation in the test data set 

has higher accuracy, with TPR of 98.8%, TNR of 99.1%, the overall accuracy of 99.0%, 

their MCC and F1-score by 97.9% and 98.8%, respectively from Table 2. Meanwhile, the 

performance of mass identification in table 2 represents the product of test folds 

performed with the diagnosis systems (i.e., the systems in the mentioned scenario), 

including segmentation. Thus, 98.78% of benign and 99.15% of malignant cases are 

correctly categorized, while 1.22% of benign and 0.85% of malignant cases are 

negatively classified in the first fold of Table 1. Similarly, other information is mentioned 

in Table 1.  

From Table 2, several experimental outputs are obtained based on four-fold tests with 

several true and false related evaluations as per different equations (i.e., Eq. 3-24) 

mentioned in section IV. Thus, several performances are also shown in Fig. 7 differently 

based on four-fold testing data sets. 
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Fig.7 (a). True value of Benign, 

Malignant and Total (in quantity 

in number) vs Four fold 

Fig 7(b). True value of Benign, 

Malignant and Total (in %) vs 

Four fold 

Fig. 7(c). False value of 

Benign, Malignant and Total 

(in quantity in number) vs 
Four-fold 
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Fig. 7(d). False value of Benign, 

Malignant and Total (in quantity 
in number) vs Four-fold 

Fig. 7(e). TPR and TNR values on 

four-fold testing              

Fig. 7(f). PPV and NPV values 

on four-fold testing 
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Fig. 7(g). FNR and FPR values as 

four-fold testing                

Fig. 7(h). FOR and FDR values as 

four-fold testing 

Fig. 7(i). PT and CSI values as 

four fold testing                   
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Fig. 7(j): ACC and BA values as 

four-fold testing 

Fig. 7(k): ACC and F1 Score 

values as four-fold testing       

Fig. 7(l): ACC and MCC values 

as four-fold testing 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Four-fold

F
1 

S
co

re
 a

nd
 M

C
C

 v
al

ue
s 

as
 f

ou
r-

fo
ld

 

 

* for F1 Score

Square for MCC

 
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Four-fold

A
C

C
, 

F
1-

S
co

re
 a

nd
 M

C
C

 v
al

ue
s 

as
 f

ou
r-

fo
ld

 

 

* for ACC

Square for F1-score

Diamond for MCC

 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Four-fold

F
M

,B
M

 a
nd

 M
K

 v
al

ue
s 

as
 f

ou
r-

fo
ld

 

 

* for FM

Square for BM

Diamond for MK

 
Fig. 7(m): F1-Score and MCC 

values as four-fold testing 

Fig. 7(n): ACC, F1-Score and 

MCC values as four-fold testing 

Fig. 7(0): FM, BM and MK 

values as four-fold testing         
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Fig. 7(p): LR+ and LR- values as 
four-fold testing 

Fig. 7(q): DOR values as four-fold 
testing 

Fig. 7(r). ROC makes on FPR 
vs TPR 

 

 

The several parts of Fig. 7 are explained as follows with different observations. The 

quantitative measurement of true and false values of benign and malignant is shown in 

Fig. 7 (a)-(d). At the same time, the outstanding performance is determined among 

relative evaluation or pair of evaluation shown in Fig. 7(c)-7(r) such as (TPR, TNR), 

(PPV, NPV), (FNR, FPR), (FOR, FDR), (PT, CSI), (ACC, BA), (ACC, F 1-Score), 

(ACC, MCC), (F 1-Score, MCC), (ACC, F 1-Score, MCC), (FM, BM, MK), (LR+, LR-), 

DOR, ROC. From this pair of evaluations, it is observed that most of these pairs are close 

to each other as their performance, whereas few are different due to false values are 

varied. 

If false data is more available in the training data set, the segmentation diagnosis 

system is adversely impacted by the negative predictive value. As a result, false positive 

rates (the proportion of inaccurate diagnoses) will be increased as per several classifiers. 

So, in the long run, with the diagnosis system's segmentation, all evaluations as per the 

confusion matrix provided well outputs in four-fold cross-validations as in Tables 1 and 2 

on the test data set. When reviewing the classification results, it was found that the 

proposed diagnosis method was better in the tested data set to compare to the training 

data set due to maximizing the number of false positives and negatives in the training 

data set as in Table 3.  

 
Table 3. True, false, positive, and negative as per classifiers on the training data set 
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As per the training data set from Table 3, different classifiers are evaluated and got 

several outputs accordingly, which are shown in the following figures (i.e., Fig 8(a)-

8(g)).  
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Fig 8(a). TPR and TNR values on 

five classifiers      

Fig 8(b) . TPR and TNR values on 

five classifiers 

Fig 8(c). ACC and BA values on 

five classifiers       
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Fig 8(d) : ACC and F1-Score 

values on five classifiers 

Fig 8(e). ACC, F1-Score and MCC 

values on five classifiers 

Fig 8(f). LR+ and LR- values on 

five classifiers 
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Fig 8(g). DOR values on five 

classifiers 

  

 

Compare to training data set with test data, test data is obtained sound results. 

Although evaluation values are mentioned in several parts of Fig.7 and Fig. 8 as per the 

tested data set and training data set, it considered only less pair of comparison from fig 8 

than Fig 7. Because, maximum false values are available in the training data set to 

compare to the test data set. 

6.3 Quantified results on training data set 

Although we have explained different parts of the diagnosis system on both tested and 

training data sets, the quantification results are still needed for further clarity. Only 

training data sets are considered for quantification performance since it is less 

performance than tested data set. The statistical evaluation is considered for 

quantification performance which is mentioned in table 4. 

 
Table 4: Statistical Evaluation as per classifiers 

Classifiers Benign Malignant Total 

 True False True False True False 

REPTree 26 23 22 25 48 48 
Random Tree 26 23 27 20 53 43 

Random Forest 27 22 23 24 50 46 

J48 22 27 18 29 40 56 
Hoeffding Tree 42 7 35 12 77 19 

Decision Stump 20 29 10 37 30 66 
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 REPTree RandomTree RandomForest J48 HoeffdingTree DecisionStump 

CCI           53.125  
% 

47.9167 % 53.125  % 53.125  
% 

56.25   % 
 

59.375  % 
 

ICI         46.875  

% 

52.0833 % 46.875  % 

 

46.875  

% 

43.75   % 

 

40.625  % 

 
MAR                       0.4913 

 

0.5208 0.492  

 

0.4879 0.4609 

 

0.4693 

 
RMSE                   0.527  

 

0.7217 

 

0.5227 0.5403 0.5657 0.5021 

 

CC (0.95 
level)    

97.9167 
% 

 

47.9167 100      % 
 

 

92.7083 
% 

 

95.8333 % 98.9583 % 
 

MRRS(0.95 

level)    

98.9583 

% 

 

50      % 100      % 

 

92.1875 

% 

92.7083 % 99.4792 % 

 

In table 4, the abbreviation as Correctly Classified Instances – CCI, Incorrectly Classified Instances (ICI), Mean 

absolute error (MAE),  Root mean squared error (RMSE), Coverage of cases (CC),  Mean rel. region size 

(MRRS)                                                  
From Table 4, it is mentioned correct and incorrect classified instances, several errors, 

coverage cases and mean region size, which are evaluated by different classifiers. 

Distinguished errors among classifiers are mentioned in Fig. 9. The error range from 

different classifiers are also shown in Fig. 9 based on mean absolute error values, and 

root mean square error values, where mean absolute error performs better than root mean 

square error. 
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Fig 9: MSE and RMSE values on five classifiers       Fig 10: Coverage of cases and Mean rel. region size values  

                                                                                                      on six classifiers 

 

In Fig. 10, it is considered only coverage of cases and mean relative region size due to 

coverage of cases and mean relative region size are close to each other because they are 

very sensitive to each other. Thus, coverage of cases and the mean relative region size of 

the training data set is very effective compared to other quantified evaluations. This 

quantification performance is also identified the good accuracy of the infected area of 

breast cancer disease. The coverage of cases and mean relative region size values are so 

effective that the infected area's contour can be easily identified. 

6.4 Comparison performance as additional Deep Learning with proposed model 

Based on the end-to-end training models implemented in this paper, screening 

mammograms have been classified and segmented with a high degree of accuracy. The 

additional number of breast images are included in the MIAS, DDSM, and CBIS-DDSM 

databases, which are assessed and the usefulness of the techniques suggested in [43]. Our 

newly used databases include Cranio Caudal (CC) vision and Mediolateral Oblique 

(MLO) images of two breasts for each patient. One of the two categories, either Benign 

or Malignant describes the cluster of cases. Both MLO and CC views of each breast are 

included in the cases of 534, 302, and 300 for DDSM, MIAS, and CBIS-DDSM datasets, 

respectively. Therefore, the DDSM and MIAS augmented images are respectively a 2136 
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and a 1208 image. MIAS, DDSM, and CBIS-DDSM databases include certain non-tumor 

mammograms, so classification criteria are based on the availability of those 

mammograms. The Dice Coefficients (DC), accuracy, sensitivity/recall, precision, F1-

Score, Area under ROC Curve (AUC), and computational time are our evaluation metrics 

under the ROC curve. We considered our proposed same equations for the above datasets 

for comparative evaluations with our proposed model. An accurate prediction gives an 

accurate result as in Eq. (13). Precision is the percentage of positive confirmed malignant 

cases corresponding to the ground truth as stated in Eq. (5). Sensitivity is the true positive 

rate, also known as the positive predictive value, or the fraction of true malignant cases 

that are found to be malignant, as shown in Eq. (3). F1 score is the harmonic mean of 

precision and sensitivity, and it incorporates these characteristics in a more generalized 

manner. The equation illustrates how the sample sets are similar as well as diverse (15). 

AUC analyses the entire two-dimensional region under the entire ROC curve and 

calculates an overall output over all possible classification threshold settings. In this 

instance, all these measurements are specified as Eq. 3 to Eq. 24. 

Our proposed model and successive deep CNN methods for classification in the image 

processing domain include different methods such as InceptionV3, DenseNet121, 

ResNet50, VGG16, and MobileNetV2 for comparative evaluation that is shown in Table 

5 and 6. 
Table 5. Performance Comparison between the proposed model and additional Deep Learning model for 
segmentation with classification Results  

Model Accuracy % AUC % Sensitivity % Precision % F1-Score % 

DDSM Database 
InceptionV3 96.45 96.87 96.96 96.86 95.88 

DenseNet121 95.89  95.44 95.67 95.36 95.63 

ResNet50 94.87 94.24 95.98 95.69 94.49 
VGG16 93.87 93.65 93.88 93.88 93.79 

MobileNetV2 92.52 92.87 92.98 91.99 92.87 
Proposed FrCN 99.0 97.87 98.80 98.80 98.80 

MIAS Database 

InceptionV3 94.32 94.59 94.88 94.32 94.52 
DenseNet121 92.89 92.88 92.99 92.98 92.88 

ResNet50 91.57 91.89 91.99 91.51 91.08 
VGG16 90.54 90.95 90.88 90.88 90.99 

MobileNetV2 89.99 88.89 89.98 89.87 89.87 

Proposed FrCN 99.20 97.54 99.30 98.70 99.21 

CBIS-DDSM Database 

InceptionV3 93.21 93.59 93.32 93.63 93.29 

DenseNet121 92.96 92.64 91.89 92.21 91.88 

ResNet50 91.27 91.81 91.22 91.32 90.99 

VGG16 89.96 89.89 89.98 89.98 89.89 
MobileNetV2 88.95 88.59 87.79 88.98 87.99 

Proposed FrCN 99.20 95.,87 98.70 99.30 99.45 

 
Table 6. Performance Comparison between proposed model and additional Deep Learning model for 
classification Results  

Model Accuracy% AUC % Sensitivity % Precision % F1-Score % 

DDSM Database 
InceptionV3 88.87 87.99 88.74 88.59 87.99 

DenseNet121 85.97 84.99 85.89 85.84 85.85 

ResNet50 84.54 83.99 83.94 84.12 84.21 
VGG16 82.81 81.99 82.74 82.43 82.34 

MobileNetV2 80.97 80.89 81.74 80.88 80.99 
Proposed 

CNN model 

99.12 98.87 99.89 99.85 98.89 
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MIAS Database 

InceptionV3 86.77 85.89 86.84 85.48 85.88 
DenseNet121 83.87 82.88 83.77 83.74 83.75 

ResNet50 82.65 81.79 81.96 82.46 82.65 
VGG16 80.98 80.87 80.84 80.83 80.84 

MobileNetV2 79.97 79.54 79.84 80.21 80.11 

Proposed 

CNN model 

99.54 98.85 99.82 98.99 98.89 

CBIS-DDSM Database 

InceptionV3 84.21 84.87 84.87 83.99 83.96 

DenseNet121 82.47 82.65 82.57 81.99 82.34 

ResNet50 81.65 80.89 80.99 81.32 81.22 
VGG16 80.98 80.77 81.89 81.99 81.84 

MobileNetV2 79.82 78.99 79.87 79.99 79.89 
Proposed 

CNN model 

99.89 98.89 99.91 99.96 98.86 

 

Here, the false positive (FP) is the malignant non-lesion pixel segmented as a lesion pixel 

with the incorrect diagnosis. The false negative (FN) is the benign lesion pixel segmented 

as a non-lesion pixel. The TP in this case, is the malignant database sample that 

corresponds to the correct diagnosis of cancer. At the same time, the TN is the benign 

database sample corresponding to the correct cancer diagnosis.  

 
Table 7. Comparative performance of IoU and DC in % 

Quantitative comparison between two data sets for classification 

References No. of mammograms databases Name of Dataset DC % IoU % 

[38] 1804 DDSM 91.89 92.99 
Proposed Model 400 INBreast  98.54 99.12 

Performance Comparison using MLO and CC view 

[38] 1804 DDSM 94.79 94.89 
Proposed Model 400 INBreast  98.99 99.28 

 

We also use the Intersect over Union (IoU) to quantify the percentage overlap between 

the target mask and our prediction of whether the patient will be malignant or benign 

with dignity as in Table 7. When IoU increases, system performance also improves. The 

ground truth mask is denoted by y, and the generated probability map is given by yˊ using 

neural network. To conclude, DC is also considered as the loss function. 

7.   Discussion 

This section discussed the proposed integrated diagnosis model based on different stages 

of deep learning approaches for identification, segmentation and classification. It appears 

that the proposed framework integrates diagnosis challenges when scanning masses since 

these tend to be located within dense tissues, including fat tissue of the breast. The FrCN 

techniques are used for mass segmentation, which utilizes multiple processing layers and 

is proposed to address the mass segmentation challenge and obtain a better classification 

with a diagnosis system. While it is true that segmentation does yield more precise and 

representative shape features that benefit classification. In fact, segmentation results in 

better classification results due to improvements in the mass regions. 

Moreover, the segmentation of the mass improves the classification rates of the proposed 

diagnosis system. Since each pixel produces an individual sample during training, which 

significantly identified the amount of training samples, each pixel can represent a 

different example during training. When the false rate is reducing, the segmentation will 
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perform well as Table 1 and 2. Classification performance is also better accordingly, as 

shown different figures from Fig 7. In Fig 7, we found the number of pairing 

performances that are very close to each other such as (TPR, TNR), (PPV, NPV), (FNR, 

FPR), (FOR, FDR), (PT, CSI), (ACC, BA), (ACC, F 1-Score), (ACC, MCC), (F 1-Score, 

MCC) etc. The diagnosis classification by CNN produces even better results. The benefit 

of the deep learning FrCN model is the improved ability to segment tissues apart from the 

main mass. The segments are then categorized into mass-exclusion tissue (with less false 

positives and negatives) and non-mass-exclusion tissue (with more false positives and 

negatives). More false positives and negatives are affected on the accuracy or other items 

of confusion matrix during evaluation as per Table 3. Thus, less performance is found in 

fig 8. Although other methods have been taken for comparison performance, our model is 

well than others as Table 5. 6 and 7. From statistical evaluation, we got mean relative 

region size and coverage of cases are close to each other as Fig 10. The proposed deep 

learning model of CNN helped enhance the diagnosis system's efficiency by using the 

deeper features found in the model. Using this description, accurate mass detection and 

segmentation are crucial to increasing a diagnosis system's feasibility and reliability. 

Finally, a distinction has been made between our proposed diagnosis system using our 

methods and another similar system.  

7.1.   Implications for Technology Management 

Breast cancer disease are increasing in women’s health and has been tried to control as 

per health management strategy. Since last two decades, this disease affects healthcare 

technological system due to lack of integrated cancer testing system. The existing testing 

system is based on time consuming testing for individual parts of testing such as 

detection, segmentation and classification. It needs strong technological skill to design 

the integrated framework for detection of cancer disease and can manage the different 

cancer testing issues.   

In this paper, the application of deep learning is utilized to process the integrated 

framework of proposed model and technological manages the healthcare system to avoid 

human errors and other significant limitations. Our proposed model detects the disease as 

benign or malignant from image when image is processed from different stages of our 

framework which is our aim of the proposed model. Particularly, the role of CNN model 

(i.e., convolutional, fully connected and SoftMax layer) is important to build this model. 

Our solution impact on technologically management of this model when we built the 

different layer using deep learning model for integrated framework. Thus, proposed 

framework technically manages large number of cancer image detection to evade of 

human confusion on disease and can also support healthcare management system. 

8.   Conclusions 

In this paper, an integrated diagnosis model is developed with deep learning approaches that are 

demonstrated to identify, segment, and classify masses from breast cancer disease images in a 

single setting framework. Making a functional diagnosis system that segments and predicts the 

form of mass as benign or malignant was challenging on our proposed model with advances in deep 

learning approaches. The diagnosis system can produce a good performance on classification based 

on segmentation capability as per a model that employs a FrCN. In this framework, the U-Net 

model is used with the pixel-to-pixel mass segmentation, which was vital in lowering the number of 

false positives and negatives. The encoder and decoder network are designed with RELU and 

Softmax layer on convolution layer to perform well segmentation. This is, in turn, to help boost the 
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overall efficiency of the proposed diagnosis system. CNN based classification performance are 

exhibited through the demonstration of segmentation. For better performance, it evaluated the 

number of equations of confusion matrix with fourfold evaluation. Each fold provides better results 

such as 99.0% accuracy, 98.8 % sensitivity, 98.8% precision, 98.8% F1-score, etc.  Thus, our 

integrated diagnosis model will help to detect the breast cancer disease and analyze the patient 

information in healthcare system.  Future work can develop a new system for clinical applications 

in radiology using the feature selection approach for image data. 

 

 
REFERENCES 

 
1. Breast cancer - WHO | World Health Organization, 26-Mar-2021. https://www.who.int/news-

room/fact-sheets/detail/breast-cancer  

2. M.A. Al-antari, M.A. Al-masni, S.U. Park, J.H. Park, M.K. Metwally, Y.M. Kadah, S.M. Han, T.-S. 

Kim, An automatic computer-aided diagnosis system for breast cancer in digital mammograms via 
deep belief network, J. Med. Biol. Eng. Vol. 38 Issue no. 3, Pages: 443–456, 2017. 

http://dx.doi.org/10.1007/s40846-017-0321-6. 

3. Y. Wang, D. Tao, X. Gao, X. Li, B. Wang, Mammographic mass segmentation: embedding multiple 
features in vector-valued level set in ambiguous regions, pattern recognition. 44 (no. 9) (2011) pp. 

1903–1915. 

4. S. Lee, C. Lo, C. Wang, P. Chung, C. Chang, C. Yang, P. Hsu, A computer-aided design 
mammography screening system for detection and classification of microcalcifications, Int. J. Med. 

Inf. 60 (no. 1) (2000) pp. 29–57. 
5. M. Al-masni, M. Al-antari, j. Park, G. Gi, T. Kim, P. Rivera, E. Valarezo, S.-M. Han,T.-s. Kim, 

Detection and classification of the breast abnormalities in digital mammograms via regional 

convolutional neural network, 39th Annual InternationalConference of the IEEE Engineering in 
Medicine and Biology Society (EMBC’17), Jeju Island, South Korea, 2017, pp. 1230–1236. 

6. M.A. Al-masni, M. Al-antari, J.-m.P. Park, G. Gi, T.-Y.K. Kim, P. Rivera, E. Valarezo,M.-T. Choi, 

S.-M. Han, T.-S. Kim, Simultaneous detection and classification of breast masses in digital 
mammograms via a deep learning YOLO-based CAD system, Comput. Methods Prog. Biomed. 157 

(2018) pp. 85–94. 

7. M.A. Al-antari, M.A. Al-masni, Y.M. Kadah, Hybrid model of computer-aided breast cancer 
diagnosis from digital mammograms, J. Sci. Eng. 04 (no. 2) (2017), pp. 114–126. 

8. N. Dhungel, G. Carneiro, A.P. Bradley, Automated mass detection in mammograms using cascaded 

deep learning and random forests, International Conference on digital Image Computing: 
Techniques and Applications (DICTA), Australia, 2015. DOI: 10.1109/DICTA.2015.7371234 

9. A. Negi, A. N. Joseph Raj, R. Nersisson, Z. Zhuang, M Murugappan, RDA-UNET-WGAN: an 

accurate breast ultrasound lesion segmentation using Wasserstein generative adversarial networks, 
Arabian Journal of Science and Engineering, 45, Issue 8, 2020, pp. 6399–6410. 

10. Z. Zhuang, A. N. J. Raj, A. Jain, N. Ruban, S. Chaurasia, N. Li1, M. Lakshmanan, and M. 

Murugappan, Nipple segmentation and localization using modified u-net on breast ultrasound 

images, Journal of Medical Imaging and Health Informatics, Vol. 9, 2019, pp. 1827–1837. 

11. G. Carneiro, J. Nascimento, A.P. Bradley, Automated analysis of unregistered multi-view 

mammograms with deep learning, IEEE Trans. Med. Imaging, 36 (no. 11)(2017) pp. 2355–2365. 
12. L. Yu, H. Chen, Q. Dou, J. Qin, P.-A. Heng, Automated melanoma recognition in dermoscopy 

images via very deep residual networks, IEEE Trans. Med. Imaging 36(no. 4) (2017), pp. 994–1004. 

13. Z. Jiao, X. Gao, Y. Wang, J. Li, A deep feature based framework for breast masses classification, 
Neurocomputing 197 (no. C) (2016) pp. 221–231. 

14. I. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. Cardoso, J. Cardoso, INbreast: toward a full-

field digital mammographic database, Acad. Radiol. 19 (no. 2) (2012), pp.236–248. 
15. J.S. Cardoso, I. Domingues, H.P. Oliveira, Closed the shortest path in the original coordinates with 

an application to breast cancer, Int. J. Pattern Recognit. Artif.Intell. 29 (no. 1) (2015) 2. 

16. N. Dhungel, G. Carneiro, A.P. Bradley, Deep learning and structured prediction for the segmentation 
of mass in mammograms, International Conference on MedicalImage Computing and Computer-

Assisted Intervention, (2015), pp. 605–612. 

17. E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic segmentation, IEEE 
Trans. Pattern Anal. Mach. Intell. 39 (no. 4) (2017), pp.  640–651. 



Author’s Names 
 
24 

18. V. Badrinarayanan, A. Kendall and R. Cipoll, SegNet: A Deep ConvolutionalEncoder-Decoder 

Architecture for Image Segmentation, in arXiv preprintarXiv:1511.00561, 2016. 
19. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-ScaleImage 

Recognition," in arXiv preprintarXiv:1409.1556, 2014. 

20. R. Llobet, J. Perez-Cortes, A. Toselli, A. Juan, Computer-aided detection of prostate cancer, Int. J. 
Med. Inf. 76 (no. 7) (2007) , pp. 547–556. 

21. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural 

networks, 25th International Conference on Neural information processing Systems, USA, 2012, pp. 
1097–1105. 

22. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object 

detection, IEEE Conference on Computer Vision and PatternRecognition, (2016). 
23. L. lab, Theano, [Online] Available: University of Montreal, 2017 (Accessed 10,2017), 

http://deeplearning.net/software/theano/tutorial/. 

24. F. Chollet, Keras: The Python Deep Learning Library, [Online]. Available: MIT,2017 (Accessed 10, 
2017), https://keras.io/. 

25. Google Brain Team, TensorFlow, 9 11 2017. [Online]. Available: (2017) (Accessed10, 2017), 

www.tensorflow.org. 
26. H. K. Bhuyan, N. K. Kamila, S. K. Pani, Individual privacy in data mining using fuzzy optimization, 

Engineering Optimization, 2021, pp. 1-19, ( Early Access ).  

27. M. A. Al-antari, M. A. Al-masni, M. Choi, S. M. Han, T. S. Kim, A fully integrated computer-aided 
diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and 

classification, International Journal of Medical Informatics, Volume 117, 2018, pp. 44-54.  

28. T. Mahmood, J. Li, Y. Pei , F Akhtar, A. Imran, and K. Ur Rehman, A Brief Survey on Breast 
Cancer DiagnosticWith Deep Learning Schemes UsingMulti-Image Modalities, IEEE Access, 

Volume 8, 2020, pp. 165779-165809,. 
29. T. Saba, Recent advancement in cancer detection using machine learning: Systematic survey of 

decades, comparisons and challenges, Journal of Infection and Public Health, Vol.13, 2020, 

pp. 1274–1289,  
30. V. Lahoura, H. Singh, A. Aggarwal, B. Sharma, M A. Mohammed , R. Damaševiˇcius, S. Kadry and 

K. Cengiz, Cloud computing-based Framework for Breast Cancer Diagnosis Using Extreme 

Learning Machine, Diagnostics, 11, 241, Feb. 2021,  pp. 1-19,. 
31. Y. Jiménez-Gaona, M. José Rodríguez-Álvarez and V. Lakshminarayanan, Deep-Learning-Based 

Computer-Aided Systems for Breast Cancer Imaging: A Critical Review, Appl. Sci.  10, 8298, Nov 

2020, pp. 1-28. 
32. I. Dankwa-Mullan, M. Rivo, M. Sepulveda, Y. Park, J. Snowdon, and K. Rhee, ``Transforming 

diabetes care through artificial intelligence: The future is here,'' Population Health Manage., vol. 22, 

no. 3, Jun. 2019, pp. 229-242. 
33. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der 

Laak, B. van Ginneken, and C. I. Sánchez, A survey on deep learning in medical image analysis, 

Med. Image Anal., vol. 42, no. 9, Dec. 2017, pp. 60-88. 
34. S. Duraisamy and S. Emperumal, Computer-aided mammogram diagnosis system using deep 

learning convolutional fully complex-valued relaxation neural network classifier, IET Comput. Vis., 

vol. 11, no. 8, Dec. 2017, pp. 656-662. 

35. H. Intisar Rizwan I, N. Jeremiah, Deep learning approaches to biomedical image segmentation, 

Informatics in Medicine Unlocked, vol 18, 2020,  pp. 1-12. 

36. Z. Wang, Mo Li  , H. Wang , H. Jiang  , Y. Yao  , H. Zhang , and J. Xin,  Breast Cancer Detection 
Using Extreme Learning Machine Based on Feature Fusion With CNN Deep Features, IEEE Access, 

Vol -7, 2019, pp. 105146- 105158 . 

37. (Online)  https://en.wikipedia.org/wiki/Confusion_matrix 2021. 
38. S. Wessam M., Aly Moustafa H., Deep learning in mammography images segmentation and 

classification: Automated CNN approach, Alexandria Engineering Journal, Vol-60, 2021, pp. 4701-

4709. 
39. H. K. Bhuyan, C Chakraborty, S. K. Pani, V. K. Ravi, Feature and Subfeature Selection for 

Classification Using Correlation Coefficient and Fuzzy Model, IEEE Transactions on Engineering 

Management, 2021,  pp. 1-15,  ( Early Access ). 
40. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image 

segmentation, International Conference on Medical Image Computing and ComputerAssisted 

Intervention, 9351, Springer, Cham, 2015, pp. 234–241.  

https://en.wikipedia.org/wiki/Confusion_matrix%202021


 Instructions for Typing Manuscripts (Paper’s Title) 
 

25 

41. N. Alam, A. Oliver, E.R. Denton, R. Zwiggelaar, Automatic segmentation of microcalcification 

clusters, Annual Conference on Medical Image Understanding and Analysis, 894, Springer, Cham, 
2018, pp. 251–261. 

42. S. Duraisamy, S. Emperumal, Computer-aided mammogram diagnosis system using deep learning 

convolutional fully complex-valued relaxation neural network classifier, IET Computing. Vis., 11 (8) 
(2017), pp. 656–662. 

43. [https://wiki.cancerimagingarchive.net/display/Public/CBISDDSM. Accessed 1 June 2019. 

44. HK Bhuyan, C Chakraborty, Y Shelke, SK Pani, COVID‐19 diagnosis system by deep learning 
approaches, Expert Systems, pp. 1-18, 2021 (Early accessed). 

45. T. Daim, K. K. Lai, H. Yalcinc, F. Alsoubie, V. Kumar, Forecasting technological positioning 

through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and 
Blockchain, Technological Forecasting and Social Change, Volume 161, 120329, December 2020. 

46. T. R.Anderson, T. U. Daim, Francois F.Lavoie, Measuring the efficiency of university technology 

transfer, Technovation, Volume 27, Issue 5, May 2007,Pages 306-318. 
47. T. U. Daim, N. Basoglu &U. Topacan, Adoption of health information technologies: the case of a 

wireless monitor for diabetes and obesity patients, Technology Analysis & Strategic Management, 

Volume 25, Issue 8, , 2013, Pages 923-938. 
48. V. K. Singh, H. A.Rashwan, S. Romani, F. Akram, N.Pandey, Md. M. K. Sarker, A. Saleh, M. 

Arenas, M. Arquez, D. Puig, J. Torrents-Barrena, Breast tumor segmentation and shape 

classification in mammograms using generative adversarial and convolutional neural network, 
Expert Systems with Applications, Volume 139,  January 2020, page: 1-15, Article No.112855. 

 

 

 

 

https://wiki.cancerimagingarchive.net/display/Public/CBISDDSM.%20Accessed%201%20June%202019

