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Abstract

The current and estimated energy demand and tb&nfial sources of supply
indicate a daunting future for humanity on the plaonless sustainable solutions are
developed. The scarcity, high cost and the poteatisironmental and health concerns
related to widely used noble-metals makes the t&itnaeven worse. Thus, active
participation from scientific and industrial comnitigs is essential to replace noble-
metal (or any metal) based processes with moraisasie alternatives. In that context,
recent developments in heteroatom-doped (espeaidiggen) nanocarbons and their
wide-ranging applications show promises towardsssulting the processes, which
normally utilize expensive, scarce and hazardoumadés. Herein, a brief overview of
nitrogen-doped nanocarbons (NNCs) is provided kgghtihg their significance and

sustainable prospects.
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Introduction

The current and anticipated future energy demamdsassociated environmental
impacts surely pose imminent threats not only tankmad but also to every living
organism and the environment on the planet.[1] G\er-utilization of precious metals
for various industrial processes along with theitemtial bio- and eco-toxicity is one of
the major components of this concern. Thus, th@eratilization of natural resources
and finding the sustainable alternatives to noreweble sources undoubtedly requires
the most attention.[2,3] In the quest of findingraen and sustainable alternative to the
noble-metal-free (or metal-free) processes, a otdssanomaterial containing carbon
nanostructures has emerged as a promising contefiderinterest in this field can be
attributed to the materials’ high abundance, reddyi low-cost (compared to metals),
easy accessibility and chemical diversity and finsize- and shape-dependent properties

(owing to their nanodimensions).[4]

In general, the carbon-based-nanomaterials areapty comprised of carbon-
backbones with hydrogen and other heteroatoms.§EB on the historical progress of
this field, common organic supramolecular aggregated polymers are excluded from
this class due to their respective unique idestiile the research community. The
structures of these nanomaterials are composedttaresg or sp carbon networks
where the remaining valencies of carbon are satisfiith hydrogen or heteroatomsde
infra). While the connectivity and the degree of unsdian dictate their electronic
structures, geometries and other properties, t@sepce of heteroatoms contributes

significantly to control such properties.

The carbon-based nanomaterials are normally Gkeddiased on their geometric
dimensions, ranging from zero (0D) to three dimemsi(3D). Though this classification
seems a little skewed towards’ sgrbon-systems like graphene, graphite etc. thdyne
developed synthetic techniques have also startefféo more variants of these systems
(such as spcarbon-systems etc.), leading to improved and \iatice properties.[5]
While the class of OD mainly includes fullerenedxhsystems [6], the carbon nanotubes

(CNTs) [7] are normally considered as 1D nanocasboecause of their unidirectional



propagation during synthesis, leading to directigmaperties. The most popular class of
nanocarbons is probably 2D class because of thentregpsurge in graphene-based
applications[8] in which the unique physico-cherhipeoperties stem from the single
layer of graphene-sheets. The 3D variants of gramh@raphite [9], encompassing
multiple layers of graphene stacked together in pleependicular direction to the
graphene-plane, are classified as 3D nanocarbdmsigh the properties of nanocarbons
are normally governed by their dimension, the pysithetic modifications and
variability in synthetic precursors open up oppoities for further improvement. In this
respect, the incorporation of the various heternatdoften termed as “dopants”) is
garnering significant attention in recent years daetheir ability to modulate the

materials’ properties and consequently eventudicgijpns.[10]

Among the dopants that are included into nanocarboitrogen and oxygen are
the most common ones primarily because of the ehsgnthetic procedures and high
abundance of the precursors. Among these hetersatoittogen dopants have ben
claimed to have the major impact towards improving nanocarbon’s properties.[11]
Within a short span of time, the field has withelsaesharp growth as reported by a few
sporadic reviews [11-14] documenting the specidlipeoperties and applications of
nitrogen-doped nanocarbons (NNCs), an updated ageeof NNCs appear timely.
Herein, selected and important synthetic procedymeperties and the applicationshof
doped nanocarbons are presented, highlighting tbgept status, challenges and future
opportunities Figure 1A).
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Figure 1.(A) An overview of the topics discussed in the nsoript. (B) and (C) Types of nitrogen atoms inagen-

doped-nanocarbons (adopted from the ref. [14]).

Present Status
Owing to the unique structural features and dasedt properties of $ghased

nanocarbons, it is more prevalent and widely stlidi® compared to other counterparts.
Irrespective of the class, mainly three types tdfogen atoms are found in NNCs [14]
(Figure B, 1C): graphitic, pyridinic and pyrrolic. The majdifference among these three
types stems from the position of nitrogen in theboa network/skeleton, the number of
heterocyclic rings they form and the participati@n lack thereof) of their lone-pair of
electrons into the carbon skeleton; these struickeadures directly modulate the physico-

chemical properties of such nanocarbons.

The graphitic nitrogen atoms refer to those nitrogéeoms, which substitute the
carbons in the graphene layer, connecting withetlotber carbon atoms in the skeleton.
Depending on their locations (either on the edgérapped inside the layer), they can
further be classified as “valley” or “center” nigens. On the other hand, pyridinic and

pyrrolic nitrogens represent the classes of nitnoggms which are parts of six and five-



membered ring, respectively. In general, for pyrithe ring aromaticity does not
involve the lone-pair of electrons from the nitragehereas pyrrole ring utilizes lone pair
of electrons from nitrogen to gain aromaticity. ey said that, however, for the
heterogeneous system, such a concept is oftendssimdowed by the overall stability of
the system. Additionally, depending on the synthptiocedures, there are also chances
of formation of aminic as well aN-oxides types of nitrogen atoms, which can have a
significant impact on the overall charge distribati Though most of the synthetic
procedures allow incorporation of more than onetgpnitrogen atoms into the system,
the lack of fundamental mechanistic understandingitoogen incorporation still makes
the prediction process relatively difficult. Themsa concept can also be extrapolated to
relatively less-studied Sgarbon-skeleton where more prevalent geometrimastcaints
lead to distortion in the structure, leading toicedble changes in their electronic and

chemical properties.

Synthetic Strategies

As opposed to classical “top-down” and “bottom-ugassification systems,
commonly used to describe the synthetic stratefgiesissembly of nanomaterials, the
synthetic methods deployed to prepblirdoped nanocarbons can be broadly divided into

two routes: 1) post-synthetic method and 2) in-giacess.

As the name suggests, in “post-synthetic” methadogen-free nanocarbons are
mixed with nitrogen-containing precursors and tleenposite can be transformed into
NNCs with the help of external energy sourdegure 2. Though the high-temperature
thermal treatment is normally used to carry ouhstmansformations, recently alternating
energy input system such as microwave (MAHA: Micave-assisted Hydrothermal
Treatment)[15], plasma and arc-discharge methodl€tté have also been reported. The
pyrolysis temperature, gas-type and flow, the obha@t precursors etc. are some of the
variables that influence the type and the amouwtvefall doping. For example, Lai et al.
reported that by changing the precursors and @tkgerimental conditions, diverse types
of nitrogen atoms could be obtaineBiglre 2\).[17] Alternatively, nitrogen can be
incorporated post-synthetically via the functiomation of nitrogenous entities onto
precursor molecules, followed by pyrolysis.[18] Fhprocess allows relatively precise



grafting of the nitrogenous entity on the nanocarlsorfaces but often suffers from

economic viability. Various non-nitrogenous carb@ush as carbon nanotubes (CNTS)
[19,20], activated carbon [21], graphene [22-24&phene-oxide (GO) [25] and reduced
graphene-oxide (RGO) [15,26] etc. and differentagién sources [11] such as ammonia,
urea, polyaniline (PANI), polypyrrole (Ppy), dicydiamide, ethylenediamine etc. have
been used for the synthesis of NNCs. The struaftiseich ensuing nanocarbons tends to
resemble more to the relatively stable non-nitregesn nanocarbons whereas the
incorporation (both amount and type) of nitrogenriesa depending on reaction

conditions.
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Figure 2. Representative synthetic strategies for the petjmar of NNCs. (A) The synthesis Nfdoped graphene with
different nitrogenous precursors (Reprinted wittrngesion from ref. [17]. Copyright 2012 Royal Sdgieof
Chemistry. (B) The explanation of concurrent segtieg technique for the preparation bfdoped graphene
(Reprinted with permission from ref. [27]. CopyridtD11 Wiley-VCH Verlag GmbH & Co. KGaA). (C) An ample



showing the synthesis of NNCs from MOF (Reprinteithvpermission from ref. [28]. Copyright 2015 Anean
Chemical Society).

The “in-situ” method on the other hand, primariyolves the carbonization of a
nitrogenous carbon source.[19,29,30] In this Itk most common method for the
synthesis of NNCs is Chemical Vapor Deposition (G\MBchnique, in which thé-
containing precursors are injected into the chanabemapor state at a high temperature
and depending on the reaction conditions, the NAI€sdeposited on a substrafég(re
2).[31] The temperature, pressure and other comditiof the chamber, the nature of
gases, the decomposition behaviors of the precurdsave significant impacts on the
extent of nitrogen incorporation as well as on tyy@es of nitrogens. For an example,
Zhang et al. reported a CVD technique describingigue substrate-dependent synthesis
of N-doped grapheneFigure B).*"! In addition to pyrolysis process, a pre-synthetic o
post-synthetic chemical activation strategy, aslwsl soft and hard-template-based
synthetic tactics can be employed to improve thepgrties namely interaction with
substrates, surface area etc. One of the majorntaly@s of this method lies in the
selection of the precursors. Since, any nitrogamtaining species, which can form a
network-structure upon pyrolysis, can potentialey Used for the synthesis Nfdoped
nanocarbons, the list of the precursors includesesof the unconventional materials
such as Metal-Organic-Frameworks (MOFdiggre ZC), [28] bio-derived N-rich
nanocomposites, [32,33Y-rich polymeric nanomaterials [33] and ionic ligsid34]
among others. Though the correlation between teeupsors and the types of nitrogen in
the nanocarbon skeleton remains elusive, the dewedat of newer CVD and other
strategies, coupled with the vast pool of availgirecursors is expected to bring more

insight into the process for the synthesis of NM@h improved properties.

It won’t be complete if the biomass-derived synibhed the NNCs is not included
in the recent trends for the synthesis of NNCs39bStrategically, in most cases, it still
requires pyrolysis of the precursors but the bioveel unique choice of precursors have
made this particular topic unique especially frdm view-point of sustainable sources.
In a very short period of time, this field has simogreat promises, as highlighted by

Luque and co-workers.[40] Now the continued redeasfforts are focused on



understanding the intrinsic reaction behavior & $pecific biomass precursors and it is
expected to achieve different NNCs as well as difie composite materials with novel

applications.

Characterization of Materials’ Properties

The salient properties df-doped nanocarbons, has provided the impetus and
motivation to pursue the research in this area wédhied emerging applications. The
growth of sophisticated characterization technigo@s helped immensely to recognize
the uniqueness of the system. The structural anghmtogical features of nanocarbons
can be visualized using different microscopic téghes and in this respect, Scanning
Electron Microscopy (SEM), and Transmission ElettMicroscopy (TEM) have been
widely utilized figure 3, 3B).[41] The Selected Area Electron Diffracti@®AED) and
Energy-Dispersive X-ray (EDX) Spectroscopy are @&sployed as useful techniques to
glean information about the level of crystallinggd the concentration of dopants present
in a particular nanocarbon sample, respectivelyceft for a few cases, the crystallinity
of the samples remains questionable and henceSmo#il-angle and Large-angle X-Ray
Diffraction (XRD) methods are normally used to nefbon the lattice planes.
Additionally, several new developments in Atomicrée® Microscopy (AFM) and
Scanning Tunneling Microscopy (STM) along with edstal mapping also provide
precise information about the numbers of layers dogant’s position, respectively
(Figure L, 3D).[42] The bond-connectivity and the chemicature of the nitrogen atoms
are considered to be two important characteristics these information can be obtained
from X-ray Photoelectron Spectroscopy (XPS) to lith the structure-activity
relationship. The atomic percentages of carbonathdr dopants can be found from the
XPS survey spectrum whereas the high-resolutiorordexduted spectra of individual
elements reveal different bond-connectivity. Forstamce, the high-resolution
deconvoluted N1s XPS spectrum shows the graphpyoolic and pyridinic nitrogen
atoms at 401.5, 400.0, 398.0 eV respectiveélgure E).[12] In addition, the degree of
unsaturation can also be found from Cls XPS spactafter deconvolution, thus
revealing the complicated network connectivity betw carbon and nitrogerfridure
3F)[43]. Raman Spectroscopy is yet another importdrgracterization tool routinely

used to calculaterligratio (Ib = Raman intensity related to the defect sit¢er IRaman

10



intensity related to the graphitic site) to asséss presence of dopants and the
concomitant absence of sparbon networks (defect sitesjidure 35).[44] Often, the
synthetic strategies for NCCs are aimed to fabzigabduct with the high surface area
and in that case the surface area of the nanocgrbwair pore-size and pore-volumes can
be calculated using Nadsorption-desorption experiments. The specialiasolvledge
about the thermal and the electrical conductivilye optical band-gap and other
properties are also routinely measured to undeatstan better structure-activity
relationship.[45] Recently, the biomedical applicas of suchN-derived nanocarbons
call for a different set of toxicological studiesdaseveral research groups are actively
looking into environmental and health safety impaftsuch NNCs.[46]
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Figure 3. Various characterization techniques used to detesriiie structural features of NNCs. (A) SEM and (B)
TEM images of N-doped CNTs (Reprinted with pernassirom ref. [41]. Copyright 2012 Elsevier Ltd.C)(STM
image and (D) DFT simulated image of N-doped shigyer of graphene (Reprinted with permission frah[42].
Copyright 2018 American Association for the Advameat of Science). High-resolution and deconvoluxdes
spectra of CCNs (E) N1s (Reprinted with permissiam ref. [12]. Copyright 2012 Elsevier Ltd and)(Els
(Reprinted with permission from ref. [43]. Copyrig2011 American Chemical Society). (G) Raman spectof N-
doped graphene (Reprinted with permission fronj44f. Copyright 2011 American Chemical Society).

Applications
The major reason for the emergenceNsfloped nanocarbons is their unique

properties, which allow them to be explored foredse applications. The amount and the

11



nature of the nitrogen dopants can change thereftectand optical properties of these
nanocarbons than their non-nitrogenous counterpBines more electronegative nitrogen
atoms (as compared to their adjacent carbons) tngignificant distortions in their
electronic band structures (by changing the digtiam of = —electrons across the carbon
networks) and influence the electrical and optpralperties of the system. The difference
in electronegativity between nitrogen and carbbe, intrinsic basicity of the nitrogen
atoms (as exemplified by the accessibility of tbeelpair of electrons of some the
nitrogen atoms) and the high surface area of NN@ributes significantly to allow the
favorable interactions between the substrates &ednenocarbons, culminating into
improved activity of the later. While the high-teempture synthetic processes impart
thermal stability and chemical-resistance to theaogarbons, the dimension-specific
property ofN-doped nanocarbons also plays a significant rol#esigning nanomaterials
for various emerging electronic and electrochemagglications.
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with permission from ref.[49] .Copyright 2013 Roy&dciety of Chemistry). (D) N-doped rGO catalyzstesgfication
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of fatty acid using long chain alcohol (Reprinteéthapermission from ref [50]. Copyright 2016 Roy@bciety of
Chemistry).

The development diN-doped nanocarbons mainly started to overcome sagme
the challenges related to non-nitrogenous variaft®anotubes and graphene-based
nanomaterials.[10] Encouraged by the initial prasjsthis class of nanomaterials has
been employed in almost every conceivable apptinatvhere graphene and nanotubes
have been used.[14] In some cases, this simplesabtde modification in an extended
carbon network resulted into comparable (or sonegifvetter) activity than that of state-
of-the-art precious-metal-based nanosystems. Beaafube unique electronic properties
of NNCs, their applications primarily include thiearical or electrochemical processes.
Their potential as supercapacit@igure 4) [16,47,51-58], anchors for Li-polysulfide in
Li-S battery [59-62], electrode materials for Lnidatteries [63-68], electrical storage
devices [14,69-72], fuel cell catalysts [73] hawedeed shown promises for the
development of non-metal-based nanosystems. Retigties have revealed the superior
activity of NNCs (mostly supported by non-noble atdiased co-catalysts) in a variety
of electrocatalytic reactions [74-89] such as Hg#mo Evolution Reaction (HER),
Oxygen Evolution Reaction (OER), Oxygen Reducti@a&®ion (ORR)Kigure 8) [48]
etc. These nanocarbons have also been employeshssrs for the detection of several

gases and other entities with high efficiency.[90,9

Other than the electrochemical applications, sdvesmariants of N-doped-
nanocarbons have been synthesized for environmdBfb3] and photocatalytic
applications Eigure 4C).[49,94-98] For example, carbon-nitride and/erderivatives can
be effectively used as photocatalytic materialseforironmental applications whereas the
melamine-formaldehyde aerogel has been deployaa absorbent for water vapor.[99]
In another instance, Jain and co-workers reportedrlaocatalytic esterification of fatty
acid with long-chain alcohol using nitrogen-dopeduced graphene oxide as catalysts
(Figure D) [50]. These nanomaterials have been infrequetdlyumented for magnetic
and biomedical applications [100] but significaffbds are still needed to gauge a clear

outcome on their true potential.
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Despite having immense potential for a range gfliegtions, the fundamental
knowledge between the activity and the differenicttiral components remains a major
hurdle to finally replace the non-sustainable cesi@and genuine efforts are being

devoted to confront such issues.

Conclusions and Future Directions

It is undeniable thaNCs show noteworthy promises for the future depedent
of metal-free nanocomposites. However, despitesitiaep growth of the field within such
a short span of time, it still requires significaftorts from the scientific community to

overcome the some of the current challenges.

The synthetic strategies of this class of nhanon@seaire primarily focused on the
thermal carbonization of the precursor moleculelse Timited knowledge about the
mechanism of formation of the nanocarbons fronpitcursors and the concerns about
the distribution of the different types of nitrogenthe carbon-skeleton confine the full
potential of the synthetic processes. Additionalhe environmental and health impacts
of such synthetic strategies have been overloolec¢ently and from a sustainability
aspect, these require special attention to aswnedfithe overall greenness of high
temperature synthetic procedures (preferably usimgge efficient alternative energy

sources).

The knowledge about the origin of the activity dNGis still is at the age of its
infancy, mainly due to lack of background infornoati The significant advancement in
instrumentation and computational methods is exgedb build a better structure-
property relationship, from which newer nanocarbevith novel structural features,
properties (such as magnetism etc.) and their idgglications can be predicted.
Additionally, a favorable, compatible combinatiohather heteroatoms with nitrogen is
other means to improve the present status of thlications but it demands more

thorough and inter-disciplinary efforts from thee@arch community.

The encouraging news is that both government aindtprsectors have identified

the value of abundant and renewable carbon resbuatean early stage and have

14



earnestly started to work in overcoming teethingdias. Hopefully, these problems will
be addressed successfully and the replacementeofintfustrial processes requiring
precious metals by metal-free, sustainable, andngreprocesses comprising NNCs or

other combination of hetero-atom-doped nanocarhadlhe seen in near future.
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