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A B S T R A C T   

Intracranial hemorrhage (ICH) is a serious medical condition that must be diagnosed in a stipulated time through 
computed tomography (CT) imaging modality. However, the neurologist must initially confirm the specific type 
of hemorrhage to prescribe an effective treatment. Although conventional image processing and convolution- 
based deep learning models can effectively perform multiclass classification tasks, they fail to classify if a CT 
input image contains multiple hemorrhages in a single slice and takes a lot of time to make the final predictions. 
To overcome these two difficulties, we proposed a novel YOLOv5x-GCB model that can be able to detect multiple 
hemorrhages with limited resources by employing a ghost convolution process. The advantage of ghost convo
lution is that it produces the same number of feature maps as vanilla convolution while using less expensive 
linear operations. Another feature of the proposed model is that it uses the mosaic augmentation technique 
throughout the training to improve the accuracy of mixed hemorrhage detection. A brain hemorrhage extended 
dataset containing 21,132 slices from 205 positive patients was used in training and validating the proposed 
model. To test the robustness of the proposed model, we created a separate dataset with the existing segmen
tation data, which are available in PhysioNet. As a result, the proposed model achieved an overall precision, 
recall, F1- score, and mean average precision of 92.1%, 88.9%, 90%, and 93.1%, respectively. In addition to 
these metrics, other parameters were used in evaluating the proposed model and checking its lightweight 
capability in terms of memory size and computational time. Results showed that our proposed model can be used 
in real-time clinical diagnosis by using either embedded devices or cloud services.   

1. Introduction 

Intracranial hemorrhage (ICH) is a dangerous condition with a 40 % 
mortality rate within one month. It refers to bleeding, which occurs 
inside the skull for one of two reasons: it can occur spontaneously or can 
be caused by trauma. Sudden ICH can be caused by a variety of diseases, 
whereas traumatic ICH can only occur in the context of trauma [1–3]. 
Patients who take anticoagulants are at a high risk of developing ICH. 
According to the position of bleeding, ICH is classified into five different 
subtypes: cerebral parenchyma hemorrhage (CPH) or intraparenchymal 
hemorrhage (IPH), epidural hemorrhage (EDH), intraventricular hem
orrhage (IVH), subarachnoid hemorrhage, and subdural hemorrhage 
(SDH) [4,5]. Currently, the clinical technique for diagnosing ICH is 
analyzing computed tomography (CT) images by radiologists. However, 
the availability of skilled radiologists and their presence in rural areas is 
a difficult task because of the lack of resources in these locations [6,7]. 

Sometimes there is a possibility of mixed hemorrhages in a single patient 
itself due to multiple fractures in the brain during injury as shown in 
Fig. 1. As a result, there is a need to automate the ICH detection process. 

Recently, deep learning (DL) techniques have been applied to med
ical images as they produce tremendous results in the segmentation and 
classification of ICH. DL is a subdivision of artificial intelligence and uses 
the concept of the human brain’s decision-making process to build al
gorithms. DL algorithms have attracted considerable interest as they use 
the higher dimensionality of training data and have marked higher 
detection accuracy than traditional methods. One additional advantage 
of DL models is that they extract features automatically from raw input 
data, and the main idea behind the working of DL is a gradient concept. 
Several DL models have been developed for the treatment of ICH in its 
early stage [8–9]. However, the main drawback of these methods is that 
they can classify different types of ICH only if a patient has only one type 
of ICH, that is, they cannot detect mixed hemorrhage cases [10,11]. 
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To overcome this limitation, object detection algorithms are used in 
classifying mixed ICH in a CT image. The object detection algorithm has 
a two-step process: classifying each object in a given image along with 
its localization. Object detection algorithms are divided into two cate
gories, namely, classification, and regression-based algorithms [12]. The 
first category divides an input image into several regions known as re
gion proposals. A convolution process is then applied to each region 
individually for the acquisition of feature maps from each region. Some 
popular algorithms in this category include region-based convolutional 
neural networks (RCNNs), fast RCNN, faster RCNN, and mask RCNN. 
However, they take a long time to converge because they must consider 
predictions from each region to obtain the final predictions. In the sec
ond category, convolution is applied over the entire image at a time to 
obtain the final prediction. The best examples in this category are YOLO 
and single-shot detector (SSD) [13–16]. Owing to technological ad
vancements, various version of YOLO has been released, such as 
YOLOv2, YOLOv3, YOLOv4, and YOLOv5, to improve detection accu
racy [17–20]. 

The main motivation behind this research is to create a model that 
can localize mixed hemorrhages with limited resources. To achieve this, 
we proposed a novel architecture named YOLOv5x-GCB, which was 
developed on the basis of a standard YOLOv5x and ghost convolution 
(GC) module. Here, YOLOv5x was used in the localization of mixed ICH, 
while the GC module was used to reduce the complexity of the proposed 
model. The main contributions of the proposed work are summarized as 
follows: 

(i) The proposed YOLOv5x-GCB model is trained using an advanced 
data augmentation technique called Mosaic to improve detection accu
racy while localizing the mixed ICH in a given CT image. 

(ii) The proposed model is lightweight (requires less memory) and 
fast as it has a high frame per second (FPS), which was achieved by 
employing a GC mechanism rather than a traditional vanilla convolution 
method. 

(iii) The performance of the proposed model was compared with 

other state-of-the-art models to determine its robustness. To make this 
comparison, we considered four metrics: recall, precision, F1 score, and 
mean average precision (mAP) at different thresholds. Apart from the 
above-mentioned metrics, we considered other parameters such as FPS, 
iterations per second (IPS), total execution time, and the number of 
trainable parameters required while executing the proposed model to 
check the speed and memory required to deploy the proposed model in 
the cloud. 

The different sections of this research paper are organized as follows: 
Section II presents a literature review of traditional methods and current 
DL models for detecting ICH. Section III describes the benchmark 
methodology used in detecting mixed ICH. Section IV presents the 
dataset description, training process, and experimental results. Section V 
provides a related discussion and a comparison to determine the best 
model. Finally, the limitations and future scope of the proposed model 
are discussed. 

2. Related works 

Currently, research on ICH detection, segmentation, and classifica
tion using CT scans is divided into two categories related to traditional 
algorithms and DL models. 

2.1. Traditional ICH detection 

In traditional methods, that is, prior to the existence of DL algo
rithms, Chan et al. (2007) used image thresholding and morphological 
operations to remove the skull area and used a median filter a pre
processing technique [5]. A hat transformation technique was then used 
in extracting hemorrhage candidates, and a knowledge-based classifier 
was used to distinguish the true and false hemorrhage pixels. A valida
tion sensitivity and specificity of 100 % and 84 % were achieved, 
respectively. However, owing to the overlapping region of the hemor
rhage with gray matter, the above process may not always produce 

Fig. 1. Illustration of CT axial slice scans demonstrating single and multiple ICH cases in a given single slice: (a) and (b) only one hemorrhage, (c) and (d) two types 
of hemorrhages, (e) and (f) three types of hemorrhages. 
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positive results. To solve this problem, Bhadauria et al. (2014) proposed 
a method called a fuzzy-based level set to segment a hemorrhage area 
from a normal one [21]. They initially used an unsupervised clustering 
algorithm, which divided input images into groups according to simi
larity, followed by a region-based active contour to segment the hem
orrhages. Their algorithm achieved sensitivity, specificity, Jaccard index 
(JI), and dice coefficient (DC) of 79.4 %, 99.4 %, 78.2 %, and 87.4 %, 
respectively. Alawad et al. (2020) used Otsu’s thresholding method as a 
preprocessing technique, and the features were extracted manually from 
a region of interest [22]. A genetic algorithm was then used to select the 
best features, which were fed into three individual classifiers to deter
mine the best model. Accuracy, precision, recall, and F1-score of 99.5 %, 
99 %, 98.9 %, and 98.9 % were achieved, respectively. 

2.2. Deep Learning-based ICH detection 

Most researchers have used DL algorithms effectively on brain im
ages to deal with problems, such as hemorrhages and tumors. With re
gard to hemorrhage, they primarily focus on segmentation, binary 
classification, and multiclass classification. In general, the size of a 
hemorrhage determines the severity of a patient. Thus, segmentation 
tasks play a key role in ICH diagnosis. Hssayeni et al. (2020) proposed a 
patch-based U-Net model and achieved a recall, specificity, and JI of 
97.2 %, 50.4 %, and 0.21, respectively [23]. The obtained recall was 
higher than the proposed model because they considered the JI value as 
0.21, which is similar to the IOU threshold in the proposed model with 
the consideration of 0.5. Ali Arab et al. (2020) utilized the deep super
vision concept in an existing CNN and obtained precision, recall, and F1- 
score of 85 %, 83 %, and 84 %, respectively. These values were lower 
than those of the proposed model [24]. 

Ground truth annotations are required to segment the exact area of 
hemorrhage, which are provided by radiologists, and obtaining them is a 
time-consuming process and expensive. Thus, Wang et al. (2020) pro
posed a new technique called semi-supervised learning, which uses 
labeled and unlabeled data to train the U-Net model [25]. Here, the 
author used an extremely limited number of labeled data and huge 
unlabeled data. Compared with the results of supervised learning alone, 
semi-supervised learning had higher DC (67 %) and JI (50 %). However, 
the availability of medical images in the public domain is limited. Wu 
et al. (2020) proposed a new technique called generative adversarial 
networks (GANs) to generate synthetic data from original data [26]. 
GANs use two modules named generator and discriminator are used to 
accomplish the task and with this model, they achieved precision and 
recall of 72.1 % and 52.3 %, respectively. 

In the next work, Ganeshkumar et al. (2022) proposed a ResNet 
model for binary classification, and then to segment the exact location, a 
novel model called SegAN is used with CycleGAN data augmentation as 
a preprocessing technique [27]. The precision, recall, and F1 score were 
94 %, 89 %, and 91 %, respectively. However, the subtypes of ICH were 
not considered. Qiu et al. (2019) proposed a U-Net model with transfer 
learning, where an encoder was pretrained with the ResNet model [28]. 
Precision and recall of 93.5 % and 95 % were achieved, respectively. 
However, mixed hemorrhage cases were not considered. Cho et al. 
(2019) proposed a transfer learning model constructed with a pair of 
CNN and FCN [29]. VGG16 was used in detecting the presence of ICH, 
whereas FCN was used to segment the delineation of ICH. Sensitivity and 
specificity of 97.9 %, and 98.7 %, respectively were achieved during 
detection, and precision and recall of 80.1 %, and 82.1 %, respectively, 
were achieved during segmentation. Mixed hemorrhages were 
segmented, but the results were lower than those of the proposed model. 
Finally, to calculate the volumes of ischemic and hemorrhagic stroke, 
Kuang et al. (2019) proposed a modified U-Net architecture that uses 
convex optimization [30]. The main advantage of our proposed model 
over segmentation models is we achieved the highest performance 
metrics by considering the IOU threshold as 0.5. Moreover, we detected 
mixed hemorrhages while most segmentation works concentrated on a 

single hemorrhage in a given CT. 
In the classification models, Thay et al. (2018) proposed a random 

forest classifier and achieved precision and recall of 99 % and 98.8 %, 
respectively [31]. Zhou et al. (2022) proposed two models based on 
transfer learning and achieved recall values of 87.4 for the Resnet model 
and 80.2 for the DenseNet-121 model [32]. Vrbancic et al. (2019) used 
the gray wolf optimization technique to tune the hyperparameters 
before transfer learning and achieved precision, recall, and F1 score of 
90 %. 93 %, and 91 %, respectively [33]. Chen et al. (2022) proposed 
three models based on the concept of transfer learning and achieved 
high accuracy in predicting whether a patient is having an ICH stroke, 
infarct, or other [34]. Despite their high detection accuracy, these 
methods are limited to binary classification. To achieve the multiclass 
classification, Chilamkurthy et al. (2018) proposed a ResNet18 model 
with five fully connected layers at the output layer [35]. Furthermore, 
each slice was labeled using a natural language processing algorithm, 
and the predictions had sensitivity and specificity of 92 % and 70 %, 
respectively. Sage et al. (2020) used two identical ResNet50 models with 
different preprocessing techniques [36]. Then, the feature maps from 
the two modules were concatenated to produce a large number of fea
tures. Finally, the classification results were compared with two 
different classifiers and the F1 score was 88.2 %. To obtain slice-wise 
information, Ye et al (2019) used a recurrent neural network (RNN) in 
conjunction with CNN [37]. A 3D CT was used in determining whether a 
patient had a hemorrhage or not by using CNN, and its subtype was 
classified with an RNN. The sensitivity and F1 scores were 83.1 % and 
85.5 %, respectively. 

Recently, a few papers on object detection algorithms have been 
published. Ferlin et al (2021) proposed a 2D faster R-CNN network and 
obtained precision, recall, and F1 score of 89.7 %, 92.6 %, and 90.8 %, 
respectively [38]. Le THY et al. (2019) proposed two architectures and 
obtained higher precision (90.5 %), recall (82.6 %), and F1 score (86.45) 
for the R-FCN model [39]. Li et al (2021) proposed an SSD architecture 
with a pretrained VGG and achieved precision and F1 scores of 79.7 and 
84.5 %, respectively [40]. Al-masni et al (2020) proposed a combination 
of YOLO and 3D CNN and achieve precision and F1 scores of 67.2 and 
77.6 %, respectively [41]. Myung et al. (2021) proposed a YOLOv2 
network based on a pre-trained ResNet-50 backbone, and the values 
improved to 79.7 % and 84.5 % [42]. 

Finally, Ertugrul et al. (2022) used the YOLOv4 architecture to draw 
a bounding box around a hemorrhage region [43]. By training all of the 
different types of hemorrhages individually, they achieved an overall 
average percentage of 92.8 %, 93.8 %, 91.8 %, and 90.6 % for F1 score, 
precision, recall, and mAP, respectively. However, these values were 
reduced to 86 %, 92 %, 81 %, and 79.6 % when all types were considered 
simultaneously. These results suggest that model performance can be 
improved in the presence of mixed hemorrhages. To overcome this 
limitation a novel YOLOv5x–GCB model was proposed, which will 
improve the accuracy to great extent even with limited resources. 

3. Proposed methodology 

This research aims to develop a model that can detect mixed hem
orrhages with high accuracy and limited resources using the bounding 
box concept. YOLO has become a subject of interest in the computer 
vision field because of its fast-computing capability [17]. YOLO creates a 
19 × 19 grid on an input image and calculates an output value for each 
grid with the parameters [Pc, Bx, By, Bh, Bw, CS1, CS2, CS3, CS4, and 
CS5], where Pc denotes the probability of a class value in a specific grid; 
Bx, By, Bh, and Bw denote the dimensions of the bounding box; and CS1, 
CS2, CS3, CS4, and CS5 denote the confidence scores of the five different 
class labels. Sometimes, more than one box is predicted around a single 
hemorrhage. In such a case, an algorithm known as non-max suppres
sion is used to delete all duplicate boxes with a Pc less than 0.6. By 
contrast, if a grid itself contains multiple hemorrhages, a fixed number 
of anchor boxes with constant dimensions are tiled over each grid, and 
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Fig. 2. Block diagram representing the total methodology for detecting mixed ICH in a given input CT image by drawing a rectangular bounding box around the 
hemorrhage along with its label name and a confidence score value. 

Table 1 
Comparison of YOLOv5 models: YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, and proposed (YOLOv5x-GCB) model in terms of model depth and width and the count of 
C3 and C3Ghost module with respect to each model.  

Parameter YOLO v5s YOLO 
v5s-GCB 

YOLOv5m YOLO 
v5m-GCB 

YOLOv5l YOLO 
v5l-GCB 

YOLOv5x Proposed Model 

Depth Multiple 0.33 0.33 0.67 0.67 1.0 1.0 1.33 1.33 
Width Multiple 0.50 0.50 0.75 0.75 1.0 1.0 1.25 1.25 
Count of C3 and C3Ghost in YOLOv5 backbone C3-1 C3Ghost-1 C3-2 C3Ghost-2 C3-3 C3Ghost-3 C3-4 C3Ghost-4 

C3-2 C3Ghost-2 C3-4 C3Ghost-4 C3-6 C3Ghost-6 C3-8 C3Ghost-8 
C3-3 C3Ghost-3 C3-6 C3Ghost-6 C3-9 C3Ghost-9 C3-12 C3Ghost-12 
C3-1 C3Ghost-1 C3-2 C3Ghost-2 C3-3 C3Ghost-3 C3-4 C3Ghost-4 

Count of C3 and C3Ghost in YOLOv5 neck C3-1 C3Ghost-1 C3-2 C3Ghost-2 C3-3 C3Ghost-3 C3-4 C3Ghost-4 
C3-1 C3Ghost-1 C3-2 C3Ghost-2 C3-3 C3Ghost-3 C3-4 C3Ghost-4 
C3-1 C3Ghost-1 C3-2 C3Ghost-2 C3-3 C3Ghost-3 C3-4 C3Ghost-4 
C3-1 C3Ghost-1 C3-2 C3Ghost-2 C3-3 C3Ghost-3 C3-4 C3Ghost-4  

Fig. 3. Formation of a three-channel RGB image from a single CT slice by exploiting three different window settings: brain, subdural, and soft tissue. The resultant 
three-channel images will be fed as inputs to the proposed model. 
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the rest of the process is similar. Finally, the performance of YOLO is 
measured by assigning a threshold to the IOU value. The entire flow of 
the proposed methodology is shown in Fig. 2. 

3.1. Proposed model (YOLOv5x-GCB) 

YOLO is one of the popular single-stage models used for object 
detection. Conventional YOLOv5 can be implemented in four ways: 
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These models are 
designed by varying the number of C3 (bottleneck CSP with three con
volutions) modules at various locations and the depth and width mul
tiples are used to indicate the number of layers used for building the 
model, as shown in Table 1. However, YOLOv5x varies from other 
versions by using the PyCharm framework instead of Darknet. The ar
chitecture of YOLOv5 mainly consists of four blocks named input, 
backbone, neck, and head [44]. 

3.1.1. Input 
The CT input is in Digital Imaging and Communications in Medicine 

(DICOM) format, it includes metadata, such as patient information, 
scanning acquisition time, hospital information, and pixel information. 
As a result, collected data should be pre-processed in order that the 
model can extract meaningful patterns from an input image. For this 
purpose, DICOM (.dcm) files should be converted into either.jpg or.png 
format using the pydicom library in the Python programming language 
[45]. The given CT slices are grayscale in nature, all input images in the 
dataset are displayed in a single window. In general, different types of 
hemorrhages are not visible in a single window because some specific 
features are highlighted in a particular window. Thus, to include this 
benefit in our proposed model, we used three different types of win
dows. The input CT image is composed of a series of CT numbers known 

as window width (WW) and window level (WL). Here, we obtained three 
different types of images through the windowing process, which are 
typically named bone window (WW: 1800, WL: 400), brain window 
(WW: 80, WL: 40), and subdural window (WW: 1800, WL: 400). The 
three images are stacked together to form a single three-channel RGB 
image as shown in Fig. 3, which has more information than any of the 
individual images. The images are resized to a specific size (256 × 256 
× 3) in our proposed model for a simple training process. Initially, 
various data enhancement techniques, such as adaptive scaling algo
rithms or mosaic creation, are used in preprocessing CT input images. A 
mosaic means that the model will combine four randomly cropped input 
images to create a new input image. In mosaic creation, an increase in 
the number of input CT images enhances the robustness of the proposed 
model. 

3.1.2. Backbone 
The cross-stage partial (CSP) network is used as a backbone, to 

obtain quality features from the input while reducing the number of 
computations. An additional focus layer is used in slicing the input 
image into four 64 × 64 × 3 slices, which are then combined using a 
concat layer, yielding a result of 64 × 64 × 12. The combined images 
pass through a convolution layer with a kernel size of 32, and thus the 
output is 32 × 64 × 64. Then, batch normalization is performed, and the 
mish activation function (AF) is applied. The output of a mish AF is 
provided by equation (1), and the final expression of mish AF can be 
obtained by substituting the outputs of tanh and soft plus as shown in 
Eqn 2. After this process, C3 is used, which divides the feature maps from 
the previous layer into two parts. One part of the features pass through a 
dense block, which includes several convolutions, batch normalization, 
and mish activation, whereas the other part is a residual path. The 
outputs from these two paths are combined by using a concat layer. The 

Fig. 4. Proposed YOLOv5x-GCB architecture and its all-internal modules.  
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main advantage of this process is that a model’s learning capability can 
be improved by removing duplicate gradient information. The vanishing 
gradient problem is eliminated with this skip connection, and the 
number of computations is reduced as the feature maps are divided into 
two paths. 

Mish(x) = x × Tanh(softplus(x)) (1)  

Mish(x) = x
{[

eln(1+ex) − e− ln(1+ex)
]

eln(1+ex) + e− ln(1+ex)

}

(2) 

Fig. 5. Functional representation of (a) ghost convolution block, (b) ghost bottleneck module, (c) C3Ghost module, and (d) SPFF module.  
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Initially, we implemented the YOLOv5x model to enhance detection 
accuracy, but with this model, the number of computations and 
complexity increase substantially. Nevertheless, the traditional 
YOLOv5x has the highest accuracy for detecting mixed ICH, but 
computation power and time should be reduced by increasing FPS or 
reducing the number of parameters and floating-point operation per 
second (FLOPS). Moreover, a lightweight model can be used in real-time 
either by deploying it in cloud services or embedded devices with 
limited resources. To accomplish this, we proposed a novel YOLOv5x- 
GCB model that can produce similar results even with few resources 
by employing GC and C3Ghost modules in existing YOLOv5 , as shown 
in Fig. 4. 

3.1.2.1. Ghost convolution (GC). In general, the output of a convolution 
layer yields several feature maps with redundant information because of 
the repetition of feature maps [46]. To prevent this situation, the pro
posed model includes a new concept known as GC. Compared with 
standard convolution, GC drastically reduces the complexity of the 
proposed model without sacrificing the number of feature maps. GC is a 
constant process regardless of the sizes of input feature maps, as shown 
in Fig. 5(a). Initially, a convolution layer with a kernel size of 1 × 1 is 
used to extract the intrinsic feature maps, after this, a 5 × 5 convolution 
is used to produce the remaining feature maps with less expensive linear 
operations. Finally, the outputs of the two layers are concatenated to 
form the final feature maps of GC. 

3.1.2.2. C3Ghost. Based on the benefits of GC, we replaced the bottle
neck CSP in the original YOLOv5 model with ghost bottleneck (GB) 
everywhere in the proposed model to obtain quality features from linear 
operations, which take a small amount of time to execute. GB includes 
two paths: the GC path and the shortcut path. A pair of GC modules are 
used in the GC path, then batch normalization and activations are used. 
The first GC acts as an expansion layer, increasing the number of 
channels. However, the second GC module reduces the number of 
channels, and a depth-wise convolution is used between the two mod
ules to match the shortcut path. Finally, the output from these two paths 
is concatenated to produce the output of the GB module, as shown in 
Fig. 5(b). Finally, C3Ghost is designed with a GB module and three 
convolution layers that can significantly reduce the complexity of the 
proposed model, as shown in Fig. 5(c). 

3.1.2.3. Spatial pyramid pooling faster (SPPF). The fully connected 
layers used in designing a model accept only fixed dimensional feature 
maps. Therefore, to generate fixed dimensions, we must resize our im
ages every time, and this process decreases detection capability. To 
avoid this problem, SPPF is used as shown in Fig. 5(d), which generates 
feature maps with fixed dimensions regardless of the input size given to 
it by performing a max-pooling operation at five different levels [47]. 

3.1.3. Neck 
In general, it is made up of a series of layers used in creating feature 

pyramids. The main objective of these feature pyramids is to recognize 
similar objects despite their different scales. To accomplish this task, a 
path aggregation network (PANET) is typically used as a neck, which 
performs three operations, namely, bottom-up path augmentation, 
adaptive feature pooling, and fully connected fusion [48]. Bottom-up- 
path augmentation is used in shortening an information path while 
improving feature pyramid values. To aggregate high and low-level 
feature maps, an adaptive feature pooling module is used. Finally, 
fully connected fusion is used in predicting objects at different scales. 
Thus, these feature pyramids play a vital role during the testing phase as 
data are unseen in the model previously [49]. 

3.1.4. Head or dense predictions 
This is an output layer primarily used in making final predictions on 

the basis of input data. To make these predictions, the head uses data 
from the training phase, such as modified anchor box values, class 
probability values, and bounding box values. The head is made up of 
three convolutional layers with different input feature maps. So, the 
predicted output from these layers will have three different scales as 
well. 

3.2. Evaluation metrics 

In this paper, different metrics, such as recall, precision, F1 score, 
and mAP, with different threshold values were used in evaluating the 
detection of mixed ICH. The confusion matrix elements true positive, 
false positive, true negative, and false-negative were used for the eval
uation of the proposed model. While implementing the YOLO model, we 
divided the input image of any size into S × S grids, and for each grid, B 
bounding boxes were created. A total of S × S × B boxes were generated, 
and the confidence score of each box can be calculated using equation 
(3), 

CSn
m = Pm,n × IOUpredict

groundtruth (3) 

where, CS is the confidence score of the nth bounding box in an mth 

grid cell, and Pm, n is the probability of hemorrhage, and its value ranges 
between 0 and 1. The amount of intersection between the ground truth 
and predicted bounding boxes is denoted by IOU. 

Recall is used in calculating the proportion of correctly predicted 
positive ICH cases in all positive samples and is given by equation (4). 
The graph of recall is obtained by considering the recall value at 
different confidence levels. 

Recall =
TP

TP + FN
(4) 

Precision is used in determining whether the proposed model’s 
prediction of various types of ICH is comparable to the actual type of 
ICH. The precision curve is plotted by considering the precision value at 
various confidence levels. The precision is calculated by using equation 
(5), 

Precision =
TP

TP + FP
(5) 

F1-Score is calculated by taking the harmonic mean of recall and 
precision, and its value becomes unity when the precision and recall 
values are 1. It is expressed mathematically according to equation (6). 

F1 − Score =
2 × Precision × Recall

Precision + Recall
(6) 

Precision and Recall Curve is a plot drawn by considering the 
precision on the y-axis and recall on the x-axis. As this curve is a tradeoff 
between precision and recall, the proposed model produces good results 
if the top right-hand side of the curve has a high value. 

Mean Average Precision (mAP) is an important metric in object 
detection and is calculated by taking the average of average precision 
(AP) values for each individual class. The mathematical representation 
of mAP is given by following equation (7), and it is calculated by fixing 
the threshold value. 

mAP =
1
N

∑N

i=1
APi (7) 

where, N is the number of classes, and the AP is used to represent the 
area under the precision and recall curve as shown in Eqn 8. where p is 
the precision rate and r is the recall rate. 

AP =

∫ 1

0
p(r)dr (8)  
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4. Results 

4.1. Description of datasets 

In the evaluation of the performance of the proposed model, CT 
image data was collected primarily from two repositories. Two separate 
publicly available datasets were used in training and testing the pro
posed model’s performance. The first dataset was a brain hemorrhage 
extended (BHX) dataset, which contained information on 491 patients 
[50]. Of these patients, 205 tested positive, and the remaining were 
labeled as normal. Only information from positive patients was used for 
training and validation. Thus, a total of 21,132 slices were extracted 
from 205 patients, which includes all the different types of hemorrhages, 
and a few slices had mixed hemorrhages. Here, the annotations were 
created by expert radiologists, and the total number of different types of 
hemorrhages, as well as their bounding box information, is shown in 
Fig. 6. Fig. 6(a) is a bar graph that shows the number of bounding boxes 

for each individual class, whereas Fig. 6(b) shows all of the bounding 
boxes in the dataset. Fig. 6(c) and 6(d) depict the statistical distribution 
of the bounding box position and size. These two figures are derived 
from the histogram plot and are primarily used to visualize the distri
bution of various data points in the employed dataset. 

The second dataset was a segmentation dataset consisting of 2500 
slices from 75 patients [23]. Only 318 of the slices had ICH, whereas the 
rest were normal. In these 318 images, masks that showed the exact 
locations of the hemorrhages were provided in a separate set of images. 
Initially, the contours of the masks were extracted, and then a rectangle 
box was created to generate the ground truth. Here, LabelImg software 
was used in creating the ground truth labels in YOLO-accepted format 
[51]. Finally, the images were used in testing the robustness of the 
proposed model in a real-world scenario by overlapping the original 
ground truth box with the predicted box. 

Fig. 6. (a) Bar graph that shows the count of different types of hemorrhages in the training dataset, (b) Bounding box distribution, (c) Statistical distribution of 
bounding box position, and (d) Statistical distribution of bounding box size. 

Table 2 
Statistical analysis of the CQ500 dataset.  

Finding EDH IPH IVH SAH SDH Overall 
Reader 1, 2 Agreement % 97.35 91.24 96.13 93.08 87.98 89.00 

Cohen’s K 0.505 0.786 0.704 0.677 0.485 0.777 
Reader 1,2 Agreement % 98.37 90.63 97.15 90.84 93.08 90.84 

Cohen’s K 0.725 0.765 0.735 60.58 0.600 0.808 
Reader 1, 2 Agreement % 98.17 90.84 95.72 90.84 90.02 88.39 

Cohen’s K 0.599 0.771 0.655 0.636 0.562 0.764 
Reader 1, 2, 3 Fleiss’ κ 0.614 0.774 0.696 0.638 0.541 0.782 
Bounding Box Count  587 7244 2432 9951 7494 27,708 
Mean  0.026 0.330 0.111 0.454 0.342 – 
Standard Deviation  0.161 0.470 0.314 0.497 0.474 – 
Variance  0.026 0.221 0.098 0.247 0.225 – 

EDH: Epidural hemorrhage, IPH: Intraparenchymal hemorrhage, IVH: Intraventricular hemorrhage, SAH: Subarachnoid hemorrhage, SDH: Subdural hemorrhage. 
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Fig. 7. Plots of training and validation loss with respect to the number of epochs for all the variants YOLOv5, including the proposed model: (a) training classification 
loss, (b) validation classification loss, (c) training bounding box loss, (d) validation bounding box loss, (e) training object confidence loss, and (f) validation object 
confidence loss. 
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4.1.1. Statistical analysis 
We calculated the inter-rater reliability between every-two radiolo

gists using Cohen’s kappa (K) and the percentage of agreement [35]. In 
addition, the reliability between all three readers was measured by 
Fleiss’ kappa(κ) coefficient. The values of Cohen’s kappa are interpreted 
as below: 0.91–1.0 as excellent, 0.81–0.90 as very good, 0.61–0.80 as 
good, 0.41–0.60 as moderate, and less than or equal to 0.3 as poor. The 
sample sizes of each hemorrhage and all the statistical measures such as 
mean, variance, and standard distribution values were calculated in the 
statistics library in python programming and are tabulated in Table 2. 

4.2. Model training and loss function 

Initially, model training was stated with pretrained COCO weights 
(mostly used in object detection). However, these weights were un
suitable for our data [52]. Thus, during the training process, the weight 
values were adjusted for every epoch by using equation (9), where Wnew 
is the new weight values after the training process, Wold is the old weight 
values before the training, η is the learning rate, and L is the loss value. 
The training process was completed whenever the loss value converged 
to a minimum, and the loss value in YOLOv5 was the sum of three in
dividual losses, as shown in equation (10). 

Wnew = Wold − η ∂L
∂Wold

(9)  

LOSS(YOLOv5x − GCB) = LOSSBoundingBox + LOSSClassification + LOSSconfidence

(10) 

The bounding box loss of a specific box named ‘p’ is caused by either 
the dimensions of the box (wp, hp) or the position of the box (xp, yp). 
Hence, this loss is a combination of two individual terms, as shown in 
equation (11). The coordinates (xp, yp, wp, hp) represent the actual di
mensions of the box, and (x̂P, ŷP, ŴP , ĥP ) represents the predicted one. 

LOSSBoundingBox = ϕPosition

{
∑s2

m=0

∑B

n=0
ΩICH

mn

[
(xP − x̂P)

2

+ (yP − ŷP)
2 ]

}

+ϕPosition

{
∑s2

m=0

×
∑B

n=0
ΩICH

mn

[( ̅̅̅̅̅̅̅
WP

√
−

̅̅̅̅̅̅̅̅

Ŵ P

√ )2
+
( ̅̅̅̅̅

hP

√
−

̅̅̅̅̅̅

ĥP

√ )2
]}

(11) 

where ΦPosition is used to penalize the false position, and ΩICH
mn spec

ifies that the nth bounding box in an mth grid cell is responsible for 
prediction and its value will become “1′′ if hemorrhage is present and 
otherwise “0”. Here, a square root was used for the height and width 
values to penalize the errors in large bounding boxes rather than the 
errors in small boxes. The classification loss was similar to the general 
binary classification loss, as shown in equation (12). 

LOSSClassification =
∑s2

m=0
ΩICH

m

∑

C∈class
[Pm(c) − Pm(c) ]2 (12) 

where the value of ΩICH
m is “1′′ if the mth grid cell contains hemorrhage 

and otherwise “0”. The Pm(c) value was used to indicate the ground truth 

Fig. 8. A batch of 6 images is used in the validation of the proposed model: (a–f) ground truth images of the ICH consisting of a bounding box along with its label 
name; (g–l) predicted images by YOLOv5x that shows the bounding box and confidence score value; and (m–r) predicted images by the proposed YOLOv5x- 
GCB model. 
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output for a specific class, whereas Pm(c‾) was used for the predicted 
output. Finally, equation (13) represents the confidence loss, 

LOSSConfidence =
∑s2

m=0

∑B

n=0
ΩICH

mn

[
(csm − csm)

2 ]
+ λno− ICH

∑s2

m=0

×
∑B

n=0
Ωno− ICH

mn

[
(csm − csm)

2 ] (13) 

where, the value of Ωno− ICH
mn is opposite to ΩICH

mn , while λno-ICH is 
similar to ΦPosition. The term csm represents the actual confidence score, 
and c‾sm represents the predicted confidence score. Once the loss value 
is calculated for a single epoch, a process known as optimization is used 
to converge this loss to a minimum point. Numerous types of optimizers 
are available, and out of them, stochastic gradient descent (SGD) was 
selected as an optimizer because of its advantages over others. SGD 
follows a zigzag path to reach a minimum point, a parameter called 
momentum was used, which nullified that effect and accelerated the 
process of reaching the global minimum point. Once the proposed model 
was properly built, it was trained with labeled data for predictions on 
test data. In training and validation, three individual losses: bounding 
box loss, classification loss, and confidence loss were generated by 
equations (11), 12, and 13. Fig. 7 shows the training and validation loss 
curves for the proposed and other versions of YOLOv5 models as a 

Table 3 
The predicted confidence score for a set of 6 input images during the validation 
stage by both the YOLOv5x and the proposed models.  

Figure Number Label Name(s) Predicted 
confidence Score 
by YOLOv5x 

Predicted 
confidence Score 
by Proposed Model 

8(a) Subdural, 
Intraparenchymal 

0.7, 0.8 0.6, 0.7 

8(b) Intraparenchymal, 
Subarachnoid 

0.9, 1.0 0.9, 0.9 

8(c) Intraparenchymal, 
Subarachnoid, 
Subarachnoid 

0.9, 0.6,0.9 0.9, 0.7,0.9 

8(d) Subarachnoid, 
Subarachnoid 

0.9, 0.9 0.9, 0.9 

8(e) Subarachnoid, 
Subarachnoid 

0.8, 0.9 
(FP: 
Intraparenchymal- 
0.7) 

0.7, 0.9 
(FP: 
Intraparenchymal- 
0.4) 

8(f) Intraparenchymal, 
Subarachnoid 

0.9, 0.7 0.9, 0.7 

FP: False Positive. 

Fig. 9. Confidence score with respect to performance metrics of the proposed model for all different types of ICH: (a) Recall, (b) Precision, (c) F1 score, and (d) 
Precision vs Recall, which is used to determine the value of mAP at 0.5 threshold value. 
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Table 4 
Performance metrics of existing (YOLOv4) and proposed (YOLOv5x-GCB) model with repect to each hemorrhage class.  

Name of the Class Precision Recall F1-Score mAP@0.5 mAP@0.5:0.95 

Existing Proposed Existing Proposed Existing Proposed Existing Proposed Existing Proposed 

EPH  1.00  0.964  1.00  0.971  1.00  0.967  1.00  0.973 –  0.685 
IPH  0.97  0.929  0.86  0.881  0.91  0.904  0.85  0.934 –  0.647 
IVH  0.68  0.877  0.65  0.847  0.67  0.861  0.63  0.891 –  0.516 
SAH  0.97  0.911  0.74  0.867  0.84  0.888  0.71  0.924 –  0.643 
SDH  0.97  0.921  0.80  0.878  0.88  0.898  0.79  0.931 –  0.629 
Overall  0.92  0.921  0.81  0.889  0.86  0.900  0.796  0.931 –  0.624 

Exiting model (YOLOv4) and Proposed model (YOLOv5x-GCB). 

Fig. 10. Comparison of the performance metrics of the proposed model (YOLOv5x-GCB) and existing models with respect to the number of epochs: (a) precision 
curve, (b) recall curve, (c) mAP curve with 0.5 as a threshold, and (d) mAP curve with 0.5–0.9 as a threshold value. 
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function of the number of epochs. These plots were produced by 
considering the loss values at each epoch, and they demonstrated the 
proposed model fine convergence. 

4.3. Experimental setup 

In the training of the proposed model, the total available data was 
divided into an 80:20 ratio for training and validation, yielding 16,905 
and 4227 training and validation images. During the training process, a 
batch size of 16 was used, resulting in a total of 1057 (16905/16) iter
ations for each epoch. In validation, a batch size of 32 was used, 
resulting in a total of 133 (4227/32) iterations for each epoch. The 
proposed model set the momentum value at 0.937, with a weight decay 
factor of 0.0005. In general, the value of ƞ was determined by either a 
static rule or a dynamic learning rate rule. In the static method, the ƞ 
value is selected in such a way that it should not be extremely high or 
low. In the dynamic rule, its value varies according to a specific condi
tion. Here, the dynamic learning rate was used, where the initial 
learning rate was set at 0.01, and its value became 0.1 after 50 epochs. 
The threshold value for IOU was set at 0.5. Finally, the proposed model 
was executed in the cloud-based Google Pro platform using a Tesla P100 
GPU and PyCharm framework. 

4.4. Bounding box detection 

In this study, a GC-based YOLO (YOLOv5x-GCB) architecture was 
used to classify mixed hemorrhages in a CT slice. To achieve this task, 
the proposed model used the bounding box technique in selecting a 
hemorrhage region instead of a normal segmentation mask. The pro
posed architecture was trained with the BHX dataset for the evaluation 
of training and validation accuracy. Finally, the performance of the 
proposed model was measured using four metrics, namely, precision, 
recall, F1 score, and mAP, in terms of confidence score with respect to 50 
epochs. During training, a batch size of 16 was used at a time, allowing 
us to visualize the number of 16 images as a batch for predicting the 
mixed ICH. Fig. 8 depicts a sample of 6 images with mixed ICH cases for 
the ground truth (Fig. 8(a-f)), predicted output with standard YOLOv5x 
(Fig. 8(g-l)), and predicted output with the proposed model (Fig. 8(m- 
r)). Table 3 shows the confidence score values for images predicted by 
YOLOv5x and the proposed model. According to the values in , Table 3 
the proposed model produced results similar to those of the standard 
YOLOv5x. 

4.5. Evaluation results on BHX dataset: 

The proposed algorithm is trained with different types of hemor
rhages. Fig. 9 depicts the proposed model performance metrics as the 
functions of the confidence score for each ICH class separately. Fig. 9(a), 
(b), and (c) show that epidural hemorrhage had the highest precision, 
recall, and F1 score among all classes. The PR curves for all ICH classes 
are shown in Fig. 9(d), which indicates that the proposed model had the 
highest predicted precision at a reasonable recall. Despite that the 
number of input epidural hemorrhage samples was few, it had the 
highest precision, whereas intraventricular hemorrhages had the lowest 
precision. The reason was that EDH is straightforward in detection, 
whereas the IVH was surrounded by other tissues, which made their 
detection difficult. The metric values of the proposed and existing 
(YOLOv4) models for each of the five individual classes are shown in 
Table 4. The proposed model significantly improved recall, F1 score, and 
mAP@0.5 for all types of hemorrhages. 

The overall performance for all types of hemorrhages indicated that 
the proposed model precision was 0.921, which was similar to the values 
obtained with the existing model, and the metrics (recall, F1 score, and 
mAP@0.5) had values of 0.889, 0.900, and 0.931, respectively, which 
significantly improved relative to those in the existing model. The 
mAP@0.5–0.9 threshold determined for the proposed model is 

presented in Table 4. The bold data in Table 4 represents the proposed 
model performance. 

Fig. 10 depicts a comparison of the proposed model’s performance 
metrics with the other versions of YOLOv5. With respect to the number 
of epochs, all evaluation metrics, such as precision (Fig. 10a), recall 
(Fig. 10b), mAP@0.5 (Fig. 10c), and mAP@0.5–0.9 (Fig. 10d) gradually 
increased for all models. In these graphs, the proposed model provided 
an average value in all metrics with respect to the number of epochs. 
Table 5 shows the comparison of the proposed model with the other 
state-of-the-art methods. Here the results are mainly compared with the 
existing model YOLOv4. The recall, F1 scores, and mAP values of the 
proposed model improved, and precision was comparable to that of the 
existing method, indicating that the proposed model outperformed 
YOLOv4. 

4.6. Detection results on test dataset 

After the completion of the training process, the proposed model was 
tested with unseen data. Here, the phrase unseen data refers to new 
separate data, that is, it is not a part of either training or validation. For 
this purpose, we used the second dataset. Fig. 11 shows a sample of the 
predicted images during the test phase. The blue box represents the 
ground truth bounding box, whereas the other color represents the 
predicted box with the proposed model. 

4.7. Ablation study on the proposed model 

Table 6 shows the results of ablation experiments to confirm the 
effect of mosaic data augmentation on the detection performance of ICH. 

Table 5 
Comparison of precision, recall, F1 score, and mAP values for conventional 
models, YOLO models, and proposed model.  

Name of the 
Model 

Precision Recall F1- 
Score 

mAP@0.5 mAP@0.5:0.95 

3D-CNN + YOLO: 
HR [41]  

0.619  –  0.747  –  – 

3D-CNN + YOLO: 
LR [41]  

0.672  –  0.776  –  – 

YOLOv2 + single 
label [42]  

0.609  –  0.695  –  – 

YOLOv2 +
double labels  
[42]  

0.627  –  0.611  –  – 

YOLOv2 + CSF 
filtering [42]  

0.797  –  0.727  –  – 

SSD( 512)-FE  
[40]  

0.797  –  0.845  –  – 

2D Faster RCNN  
[38]  

0.897  –  0.908  –  – 

Faster R-CNN  
[39]  

0.857  0.844  0.85  –  – 

R-FCN [39]  0.905  0.826  0.864  –  – 
YOLOv4 -ST 43]  0.938  0.918  0.928  0.906  – 
YOLOv4 -TT  

[43]  
0.920  0.810  0.860  0.796  – 

YOLOv5s -TT  0.895  0.863  0.880  0.909  0.550 
YOLOv5s- GCB 

-TT  
0.885  0.841  0.850  0.873  0.510 

YOLOv5m -TT  0.910  0.900  0.910  0.920  0.617 
YOLOv5m – GCB 

-TT  
0.905  0.869  0.890  0.915  0.572 

YOLOv5l -TT  0.929  0.918  0.920  0.934  0.638 
YOLOv5l –GCB 

-TT  
0.909  0.892  0.900  0.929  0.608 

YOLOv5x -TT  0.928  0.931  0.930  0.948  0.663 
Proposed Model 

(YOLOv5x- 
GCB) -TT  

0.921  0.889  0.900  0.931  0.624 

* ST – Separate Training, TT- Together Training, HR – High Resolution, LR-Low 
Resolution, and FE –Feature Enhancement. 
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Experiment results show that when the Mosaic concept is used, the 
detection results of the proposed model were improved significantly. 

5. Discussions 

This research provides a comprehensive analysis of the localization 
of mixed ICH by using the YOLOv5x-GCB architecture with limited re
sources. The classification of multiple hemorrhages in real-time by using 

conventional methods and existing CNN models is not possible because 
these algorithms are effective if and only if a patient has only one type of 
hemorrhage. As a result, an object detection algorithm was used in the 
proposed model to classify mixed hemorrhages in the given CT image. In 
addition, the proposed model takes less convergence time and uses 
fewer resources. Table 5 indicates that the proposed model out
performed existing models for all classes in terms of performance met
rics. The existing (YOLOv4) and proposed methods in Table 5 employed 
a CT image dataset, whereas the remaining methods in Table 5 used the 
MRI dataset for model training. Fig. 12 depicts a comparison of the 
evaluation metrics of YOLOv4, standard YOLOv5x, and the proposed 
model. As shown in Fig. 12, the proposed model evaluation parameters 
were similar to the YOLOv5 model and better than the existing YOLOv4 
model. These findings indicated that the proposed model outperformed 
existing models in predicting multiple hemorrhages in a single slice. 
However, the disadvantage of standard YOLOv5x is that it requires a 
large number of resources and time to complete the training process. To 
address this, we proposed the YOLOv5x-GCB model, which produces 
nearly identical detection results with optimized resources, as shown in 
Table 7. 

Initially, we implemented the YOLOv5s model, and its performance 
is compared with YOLOv4 as shown in Table 5. Here, the recall value 
increased by 5.3 % compared with that value in YOLOv4, and the mAP 
and F1 scores increased by 11 % and 2 %, respectively, but the precision 
decreased by 2.5 % (Table 5). To improve the detection capability 
furthermore, we implemented other versions of YOLOv5 by increasing 
the network depth, such as YOLOv5m, YOLOv5l, and YOLOv5x. Finally, 
using the existing YOLOV5x, we achieved 0.928 precision, 0.931 recall, 
0.93 F1 score, and 0.948 mAP@0.5. With these results, we confirmed 
that YOLOV5x produced significantly better results than the existing 
models. However, increasing the number of layers for better perfor
mance increases the values of other parameters, such as gradient, 

Fig. 11. Predicted images during the testing phase of the proposed model for various types of ICH: (a) subdural type with a confidence score of 0.6; (b) epidural type 
hemorrhage with a confidence score value of 0.8; and (c) subdural hemorrhage with a confidence score of 0.7. The blue color represents the ground truth bounding 
box, and the yellow and orange colors represent the predicted bounding boxes. 

Table 6 
The performance of the proposed model for detecting ICH using mosaic data ablation.  

Name of the Model Use of Mosaic Precision Recall F1 score mAP@0.5 mAP@0.5:0.95 

YOLOv5s × 0.646  0.541  0.588  0.585  0.262 
YOLOv5m × 0.711  0.596  0.648  0.633  0.291 
YOLOv5l × 0.757  0.647  0.697  0.693  0.336 
YOLOv5x × 0.792  0.673  0.727  0.721  0.349 
Proposed Model × 0.788  0.652  0.713  0.699  0.323 
Proposed Model (YOLOv5x-GCB) -TT √  0.921  0.889  0.900  0.931  0.624 

× - Model trained without Mosaic √ - Model trained with Mosaic. 

Fig. 12. A bar graph that shows the metrics comparison of the proposed model 
(YOLOv5x-GCB), existing YOLOv4, and standard YOLOv5x. 
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GFLOP, total weight size, GPU-memory required, and execution time, as 
shown in Table 7. Although, the primary goal of this research is to 
develop a model that can be able to detect mixed hemorrhages with 
limited resources. 

To achieve this objective, we used the ghost convolution module in 
standard YOLOv5. With this process, although the number of layers 
increased to a large number, the computation time, FLOPs, and memory 
were drastically reduced. The GC process was initially implemented in 
YOLOv5s, and then the number of layers was increased from 270 to 453. 
However, the number of gradients, FLOPs, and model weights was 
reduced by nearly half. However, as the original YOLOv5s itself had 
fewer layers, we were unable to find a positive change in FPS, the 
number of iterations per second, and the total average execution time of 
YOLOv5s-GCB. Therefore, to examine these changes in the right direc
tion, we implemented this ghost concept in m, l, and x as YOLOv5m- 
GCB, YOLOv5l-GCB, and proposed YOLOv5x-GCB models. Finally, 
with the proposed model, we achieved a lightweight model with similar 
performance results to the original YOLOv5x model. 

The main advantages of the proposed model are as follows: 

(1) It can detect the mixed ICH along with their localization. 
(2) It requires less memory, allowing us to deploy the proposed 
model in either cloud or in embedded devices for real-time clinical 
diagnosis. 
(3) It creates a bounding box around a hemorrhage, thus improving 
segmentation accuracy, and it is simpler than pixel-wise semantic 
segmentation. Moreover, a radiologist may obtain additional infor
mation about the injury location. 
(4) The total time required to execute the proposed model is reduced 
as it has a higher FPS and IPS. 
(5) The number of FLOPs required to execute the proposed model is 
extremely low even though the number of layers increases. 

The main limitations of the proposed model are as follows: (1) The 
addition of a ghost module in the standard YOLOv5x leads to the 
degradation of performance metrics. (2) The dataset used in executing 
the proposed model is imbalanced. (3) The bounding box for each input 
image is selected manually in the preparation of training data. 

These limitations can be addressed by improving the proposed model 
by incorporating the squeeze and excitation (SE-module) in the back
bone, or the concept of ensemble learning can be used to promote the 
detection capability even in the presence of a ghost module. The data 
imbalance problem can be eliminated by assigning the highest weight 
value to a minority class and the lowest weight to a majority class label. 
Multiple hemorrhages commonly occur in real-time clinical diagnosis. 
Therefore, detection and classification mechanisms deployed “on the 
fly” in a CT scanner would be extremely valuable while performing the 
clinical diagnosis. In the clinical implementation stage, the proposed 
algorithm generally works behind the scenes to optimize the radiolo
gist’s read time for studies with ICH. In general, radiologists analyze CT 
scans at the top of the reading list. As a result, a ruled-based engine can 
be used to sort the reading list by prioritizing emergency examinations. 

Finally, a data pipeline system can transfer CT studies to the computing 
server that contains the proposed algorithm, allowing for real-time 
implementation of the proposed algorithm. The algorithm generates a 
binary output after processing a specific CT study (either positive or 
negative ICH). If the results were positive, the priority of the study was 
raised to “emergency,” and the radiologist reading list was immediately 
updated. On the other hand, if the findings were non-emergency, the 
study’s priority remained unchanged. 

6. Conclusions 

The primary goal of this research work is to create a model that can 
detect the presence of mixed hemorrhages in a CT image by using a 
lightweight model with limited resources. To achieve this objective, a 
standard YOLOv5x model was used, and the accuracy of the detection 
results were ensured by predicting the mixed hemorrhages in a single 
slice. However, the limitation of the standard YOLOv5x is that it requires 
large memory and takes a longer time to make predictions. To overcome 
this limitation, a novel YOLOv5x-GCB model was proposed, which em
ploys the concepts of GB and GC. The main benefit of incorporating 
these modules into the proposed model is that the memory required to 
store the weights of the proposed model is reduced to nearly-one-third 
that of the existing model, allowing us to deploy it in real-time clinical 
diagnosis by using the cloud services to optimize the radiologists read 
time. Moreover, the speed increases two times, and the number of 
computations are reduced to one-quarter of the time by producing 
nearly identical results. Furthermore, the significance of semantic seg
mentation is greatly enhanced as a result of the proposed bounding box 
concept. 
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Table 7 
Comparison of hardware requirements and the number of calculations used in conventional and proposed models and parameters used in determining the best model.  

Model YOLO Layers Parameters 
(Million) 

Gradients 
(Millions) 

Flops Model Weight 
(MB) 

Frames/second 
(FPS) 

Iterations/ 
second 
(IPS) 

Memory GB 
(GPU) 

Avg. time/ 
epoch 
(Min) 

Total Execution 
Time (Hours) 

v5s 270  7.033  7.033  15.9  14.3 187  11.65  0.751  1.30  1.490 
v5s- GCB 453  3.695  3.695  8.10  7.70 165  10.27  0.629  1.42  1.540 
v5m 369  20.88  20.88  48.1  42.1 94  5.86  1.400  3.00  2.851 
v5m - GCB 695  8.542  8.542  18.4  17.5 123  7.67  1.170  2.15  2.140 
v5l 468  46.15  46.15  108.0  92.7 60  3.77  2.240  4.41  4.320 
v5l -GCB 937  15.61  15.61  33.3  31.8 95  5.92  1.770  2.56  2.650 
v5x 567  86.24  86.24  204.3  173.1 33  2.10  3.780  8.22  7.752 
Proposed 

Model 
1179  25.08  25.08  53.3  50.9 59  3.68  2.350  4.47  3.320  
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