
IET Image Processing

Research Article

End to end system for hazy image
classification and reconstruction based on
mean channel prior using deep learning
network

ISSN 1751-9659
Received on 18th June 2020
Revised 15th December 2020
Accepted on 7th January 2021
doi: 10.1049/iet-ipr.2020.0923
www.ietdl.org

Sivaji Satrasupalli1 , Ebenezer Daniel1, Sitaramanjaneya Reddy Guntur1, Shaik Shehanaz1

1Vignan's Foundation for Science Technology and Research, Department of Electronics and Communications Engineering, Vadlamudi, Guntur,
AP, 522213, India

 E-mail: sivaji.ganesh1100@gmail.com

Abstract: Outdoor images are having several applications including autonomous vehicles, geo-mapping, and surveillance. It is
a common phenomenon that the images captured outdoor are prone to noise, which arises due to natural and manmade
extreme atmospheric conditions such as haze, fog, and smog. Importantly in autonomous vehicle navigation, it is very important
to recover the ground truth image to get the better decision by the system. Estimation of the transmission map and air-light is
very crucial in recovering the ground truth image. In this study, the authors proposed a new method to estimate the transmission
map based on a mean channel prior (MCP), which represents the depth map to estimate the transmission map. The authors
proposed a deep neural network to identify the hazy image for the further dehazing process. In this study, the authors
presented, two novel contributions, first an MCP-based image dehazing and second, a deep neural network-based identification
of hazy images as a pre-processing block in the proposed end to end system. The proposed deep learning network using the
TensorFlow platform provided validation accuracy of 93.4% for hazy image classification. Finally, the proposed MCP-based
dehazing network showed better performance in terms of peak-signal-to-noise ratio, structural similarity index, and
computational time than that of existing methods.

1 Introduction
Poor visibility is a challenging problem in recovering the ground
truth. Recently, many researchers have contributed to solving this
problem. Haze is essentially composed of aerosol, tiny suspended
particles, and fog responsible for an increase in relative humidity in
the air to reach saturation [1]. Hence haze and fog have the same
origin and limits visibility. In many applications, it is required to
automatically detect the hazy image and apply appropriate
algorithms to recover the original radiance for the detection of
objects for further processing like segmentation, object detections,
and various vision applications [2]. As the concentration of haze is
directly correlated to the depth of the object and having no
information about depth poses a challenging task [3]. Kumar et al.
[4] proposed colour uniformity principle for estimating the
transmission map but airlight estimation is prone to error in
different haze conditions. The work of Gao et al. [5] is based on
the local linear fusion of gamma-corrected grey image and
subtracted haze layer image, having a problem of generalisation to
different images. Narasimhan and co-authors proposed a dehazing
algorithm based on multiple images, taken under different degrees
of polarisation. Though it produces impressive results, it is
extremely inconvenient to take multiple images in real-time. In
past, there is a remarkable improvement made in single image
dehazing techniques by various researchers. Image enhancement
techniques like contrast-limited adaptive histogram equalisation
(CLAHE) and retinex methods were applied for haze removal.
CLAHE was developed for medical images and has shown better
performance but for hazy images, results are not visually
competent [6]. Retinex theory shows better performance if the
illumination is insufficient [7] but haze removal is completely
different and depends on the depth of the object. Tan proposed a
novel single image haze removal by enhancing the local contrast of
the image based on Markov random fields, but it is having a
problem of colour shifting [8]. Fattal proposed independent
component analysis for haze removal, but the approach is time-
consuming [9]. The minimum channel prior (MCP) based on the
statistical conclusion that all the field images will be having at least

one colour channel value low and very close to zero and the
transmission map was estimated based on this prior but as the
refinement of transmission map was done based on soft matting it
was very time consuming [10].

There were various modifications introduced in the
conventional DCP approach to improve the visibility of hazy
images such as guided filter instead of soft matting for single-
image dehazing [11]. Also, made various changes such as fusion of
high-frequency components and near-infrared image [12], usage of
surround filter [13] with DCP for dehazing and average saturation
prior [14], respectively, for estimating the transmission map. Linear
transformation techniques such as minimum filtering, fast mean
filtering, and geometric and natural features of outdoor images [15]
were used for transmission map and airlight estimation and little
improvement was shown over the application. The methods such as
colour attenuation prior [16] and boundary constraint prior [17]
were used. Distinctive colours in an image form tight clusters in
clear images [18], all the outdoor images can be represented with a
finite number of colours and forms haze line, which were used for
dehazing in literature. In past, many DCP-dependent techniques
were introduced for image dehazing application, which includes
scene prior using reference retrieval [19], saliency map [20],
adaptive wiener filter, [21] and non-local total variation (NLTV)
regularisation [22]. Recently, Sahu and Seal [23] presented a new
method for estimating the transmission map for the sky and non-
sky regions based on luminance stretching and DCP, respectively,
and applied sigmoid fusion for the process.

Artificial intelligence methods such as deep learning and
machine learning are effectively used in various imaging
applications. Cai et al. [24] proposed a deep learning-based single
image dehazing net called DehazeNet using a convolutional
network, by applying bilateral rectified linear unit activation
function for transmission map estimation. Santra et al. [25]
proposed patch quality comparator based single image dehazing
using deep learning approach. All the above-proposed methods
have shown remarkable improvement but still, have scope for
further improvement. To the best of our knowledge, our work is the
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first one to introduce image dehazing based on the MCP. In
addition to MCP dehazing, we introduced a deep learning-based
approach for hazy and non-hazy images classification as a pre-
processing unit. Based on the limitations of the existing methods in
the literature, we proposed the following:

• Hazy image classifier for automatic detection of hazy images to
avoid unnecessary pre-processing of clear images.

• Computationally efficient depth estimation based on MCP for
removal of haze.

The article is organized as follows: Section 1 presents the
introduction, Section 2 discusses the scattering model, Section 3
explains the proposed method, Section 4 discusses the comparison
of results, Section 5 presents the subjective analysis, and finally, in
Section 6 the conclusions are discussed.

2 Atmospheric scattering model
Atmospheric scattering model can be represented by the following
equation [2]:

I(x, y) = J(x, y) ⋅ t(x, y) + (1 − t(x, y))A (1)

where (x,y) are the coordinates of the pixel, I x, y  is scene
radiance, J x, y  is the ground truth of the image and t x, y  is the
transmission map and A is the airlight. Transmission map depends
on the distance of the object with reference to the camera [2].

t(x, y) = e−βd (2)

where β is the attenuation coefficient and d (x,y) represents the
depth of the object in the image at (x,y) coordinates. From the
above two equations, we can understand that as the depth of the
object tends towards infinity, t(x) tends to zero, and I(x) = A. If the
object is in the foreground, depth will be relatively low and (1)
becomes J(x,y) = I(x,y). If two unknowns namely d(x) and A can be
calculated, then the original scene radiance can be recovered from
the distorted image. After estimating the two key parameters
namely transmission map and airlight, ground truth can be
extracted based on the following (3) by reorganising the (1)
minimum and maximum values of transmission map were limited
to 0.1 and 0.9, respectively, to avoid colour shift of bright object
and thick haze.

J(x) = I(x) − A
min max e−βd(x), 0.1 , 0.9

+ A (3)

3 Proposed method
Our method is based on the statistical observation that most of the
pixels in outdoor images will have intensities <110 in the scale of
0–255 integer pixel values. The proposed method is broadly

classified into two parts namely classification and reconstruction.
Intelligence is to be added to make any system automatic. For this
reason, we have implemented a classifier based on CNN
architecture to classify whether the captured image has suffered
from haze/fog. If the classifier output is close to zero then we can
conclude that the input image is clear and can be used for further
processing immediately. In this paper, the proposed classifier
achieves 93.4% accuracy. If the classifier outputs a value close to
one, then the captured image has suffered from noise like fog/haze.
This classifier helps to skip the clean images and reduces the
pressure on the processor and requires no human interference. The
algorithm was designed to process the input image if the classifier
score is >0.6.

After classifier, depth map was estimated based on MCP, it is an
average of the three channels namely red, green, and blue. The
mean value is linearly correlated to the concentration of the haze
and hence represents the depth map. Transmission map was
estimated based on (5) and guided filter [9] was applied to remove
any artefacts in the image. Finally, the dehazed output was restored
based on (3). Hereafter the proposed method is organised as
follows. Section 3.1 explains the classifier, Section 3.2 discusses
the histogram relation of the haze and clear image, Section 3.3 is
about the estimation of transmission map based on MCP, Section
3.4 is airlight estimation, and Section 3.5 deals with the scene
radiance recovery.

3.1 Deep learning-based hazy image classifier

Our proposed deep learning network is inspired by ImageNet [26],
we introduced a neural network to classify the Hazy image. A
neural network generally consists of three layers namely the input
layer, hidden layer, and output layer. The input layer will accept the
hazy image, hidden layer, and output layer will act as non-linear
functions to calculate the classifier score. Each hidden layer
includes a convolution, max-pooling, and rectifier linear unit
(ReLu) as the activation function. Convolution layer will calculate
the features of the image progressively. Max-pooling layer is a
down-sampling operation, which reduces the size of the image by
taking maximum value in a 2 × 2 matrix. ReLu activation function
is max(0,x) removes any negative values. Flatten layer converts
any array into a single column vector and dropout layer randomly
removes 50% of the weights to avoid overfitting problem. If
overfitting happens, then the classifier produces better training
accuracy but cannot generalise on unseen data and hence will not
be useful for any practical applications. So dropout layer was
added to improve the generalisation on unseen data. In densely
connected layers all inputs are connected to all outputs by weights
and useful in labelling the image class as hazy or clear. The output
layer used softmax as activation function and produces an output
value always within the range of 0 and 1. Table 1 shows the
proposed architecture, which consists of four hidden layers and an
output layer. Each hidden layer consists of convolution filters,
max-pooling layers, and ReLus. The layers were densely
connected, the fully connected layer consists of flattened layer,
dense layer, and dropout layers. After defining the architecture, the
performance is completely depending on the volume and variety of
the data set. The data set was carefully designed by taking 2000
images from various resources like NYU Depth data set [27],
RESIDE data set [28], Foggy Road Image Database (FRIDA) [29],
and Google images. Data set is divided into training and validation
data with 70:30 ratios. The architecture was trained on these
images with batch size 100 images and epochs 50 on Keras
platform and got validation accuracy of 93.4%.

3.2 Mean channel prior

In this work, we proposed a simple prior for reconstructing the
hazy images based on MCP. Based on the extensive study using
NYU Depth data set and RESIDE data set, it was observed that the
mean value of three channels linearly increases with the increase in
haze concentration. After comparing the histograms of mean values
of ground truth and hazy image, it was statistically concluded that
mean channel value increases with the increase in haze
concentration, i.e. as depth increases. Fig. 1 shows that the mean

Table 1 Proposed deep learning network architecture using
CNN
Layer (type) Output Shape Param #
conv2d_l (Conv2D) (none, 148, 148, 32) 896
max_pooling2d_l (Max Pooling2) (none, 74, 74, 32) 0
conv2d_2 (Conv2D) (none, 72, 72, 64) 18496
max_pooling2d_2 (MaxPooling2) (none, 36, 36, 64) 0
conv2d_3 (Conv2D) (none, 3,4 34, 128) 73856
max_pooling2d_3 (MaxPooling2) (none, 17, 17, 128) 0
conv2d_4 (Conv2D) (none, 15, 15, 128) 147584
max_pooling2d_4 (Ma xPooling2) (none, 7, 7, 128) 0
flatten_l (Flatten) (none, 6272) 0
dropout_l (Dropout) (none, 6272) 0
dense_l (Dense) (none, 512) 3211776
dense_2 (Dense) (none, 1) 513
Total params: 3,453,121; trainable params: 3,453,121; non-trainable params: 0
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pixel values distributed in the entire scale and 75% pixel values are
<0.6 but as haze concentration increases mean pixel values are
concentrating at a relatively high value.

Mean channel of the hazy image can be calculated as follows:

Mc = mean
c ∈ R, G, B

IC(x, y) (4)

where I is the input hazy image, x is the index of the image and Mc
is the mean channel which represents the concentration of haze and
can be approximated as a depth map. Based on the atmospheric
scattering model transmission map can be calculated with the
following (5). Fig. 2 shows the intermediate results after applying
the MCP in the atmospheric scattering model and Fig. 3c shows an
example of MCP.

t(x, y) = e−β(Mc) (5)

where Mc is the depth map estimated from MCP and β is the
atmospheric attenuation factor and is wavelength sensitive and
hence it is different for three colour channels. Its impact was
minimal as per the previous paper and in this paper also it is
assumed to be the same.

Fast guided filter [34] was applied on the estimated
transmission map t(x,y) to smoothen without affecting the edges
present in the original image. G x  is the output of the fast guided
filter can be calculated as

G(x) = a1J(x) + bi, ∀x ∈ ωi (6)

where J x  is the guidance image, x is the index of the pixel, and i
is the index of the local window ω with radius k. ai and bi are
averages of a and b in the window ω. Given the transmission map
t(x) as filtering input and minimising the error between G x  and
t(x) gives

Fig. 1  Histogram comparison of clear and hazy image.
(a) Clear image, (b) Hazy image, (c) Histogram of (a), (d) Histogram of (b)

 

Fig. 2  Proposed block diagram
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ai =
1
ω ∑X ∈ ωi

J(x)t(x) − μiti

σi
2 + ∈

(7)

bi = ti − aiμi (8)

where μi and σi are mean and variance of J x  in the window ω and
ϵ  is used for controlling the smoothness.

3.3 Atmospheric light calculation

Another important factor in solving the haze model (3) is the
estimation of airlight (A). As per the haze model, brightness
significantly increases as haze concentration increases, the highest
value of the input image as atmospheric light A considered in [4].
However, sometimes images might include white objects brighter
than the actual A, which potentially misleads the estimation. So in
this paper, airlight was estimated based on the average of top 0.1%
pixels of the dark channel [10]. The dark channel can be calculated
as

Jdark(X) = min
C ∈ r, g, b JC(X) (9)

Jdark x  is the minimum channel in the given input J(x). Airlight
can be calculated based on (9) as follows:

A =
∑i = 0

n Jdark(i)
n

(10)

where n is the 0.1% equivalent number of pixels in Jdark x  in
ascending order so that only brightest pixels will be considered.

3.4 Scene radiance recovery

After calculating the transmission map and airlight, we have
reconstructed the scene radiance from (1). The final scene radiance
can be recovered by (11), by reorganising the (1), ground truth
J(x,y) can be written as

J(x, y) = I(x, y) − A
t(x, y) + A (11)

ground truth can be retrieved by substituting the (6) and (10) in
(11). To avoid colour shift of bright objects transmission map was
limited in the boundary of (0.1,0.9), which results in the following
equation:

J(x, y) = I(x, y) − A
min max G(x), 0.1 , 0.9 + A (12)

4 Experiment results and discussion
Next, we compare the performance of the proposed algorithm with
the three state-of-the-art methods on both synthetic images and
real-world images.

4.1 Data collection

For hazy image classification, it is required to have both hazy and
haze-free images. We have manually selected 2000 hazy and haze-
free images from NYU Depth data set, Google, FRIDA [29] and
RESIDE Data set. We have set the classification score as 0.6 for
identifying the hazy image. Some of the hazy images were shown
in Figs. 4a–d was taken from Middlebury and IHAZE data set. 

4.2 Hazy image classification

The proposed CNN architecture was trained on the manually
tailored data set. We have set the parameter of architecture as batch
size 100, the number of epochs 50 and 50% dropout. Dropout layer
[31] is an effective method for regularisation and proved to

improve validation accuracy. The validation accuracy of the
classifier on unseen data was achieved as 93.4%.

The hazy classifier was trained on Keras library in Google
Colaboratory. Fig. 5 shows the training and validation accuracies
versus the number of epochs. 

4.3 Comparisons on synthetic images

The proposed algorithm was quantitatively verified and compared
with the three state-of-the-art methods on Middlebury D-haze data
set [32] and IHAZE data set [33]. Fig. 4 shows the sample of both
Middlebury hazy images IHAZE images, Figs. 6–9 shows the
results of Wang et al.'s method [3], Cai et al.'s method [24], and
Zhu et al.'s method [16], respectively. Dehazing results of Wang et
al.'s method [3] suffer from a colour shift and artefacts at edges,
Cai et al.'s method [24] and Zhu et al.'s method [16] is still having
haze. Although the proposed method also has traces of haze but
fairly good with respect to colour shift and artefacts. All these four
methods were compared quantitatively on Middlebury D-haze data
set. We have taken the structural similarity index (SSIM) and the
peak-signal-to-noise ratio (PSNR) as performance metrics [30].
Table 2 shows the comparison of SSIM and PSNR, the last row
shows average values for 18 images. The proposed method was
good with classroom1 and flower images and fairly good with
reaming as the proposed method is very simple and proved to be
robust. The proposed method also validated on IHAZE data set.
Tables 3 and 4 show the comparisons of the SSIM and PSNR with
IHAZE data set. The results produced by the proposed method are
on par with Cai's method and outperforms the remaining methods.

The PSNR and structural SSIM was evaluated as follows:

PSNR( f , g) = 10log 2552

MSE( f , g) (13)

MSE( f , g) = 1
MN ∑

i = 1

M

∑
j = 1

N
f i j − gi j

2

(14)

SSIM( f , g) = 2μ f μg + C1 2σ f g + C2

μ f
2 + μg

2 + C1 σ f
2 + σg

2 + C2
(15)

where f and g are the reference and restored images,
μ f , μg, σ f , σg, σ f g are local means, standard deviations, and cross-

correlations.

4.4 Execution time

The efficiency of the proposed method was compared with state-
of-the-art methods. We have computed the computation complexity
of different images with different sizes. All methods have been
executed in MATLAB 2019b with the same computer (LENOVO
Laptop with processor i5-3210M at 2.50 GHz and 8.0 GB RAM).
Table 5 shows the comparison with the state-of-the-art methods
and the proposed method outperforms all the methods for small
images in the order of 200 × 200 (computational time excluding the

Fig. 3  Overview of the proposed method
(a) Input distorted image, (b) Restored image, (c) Mean channel
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classifier) and performs well for large images except Wang's
method [3]. 

We have executed the 1 Mpixel image four times and noted the
average time taken for each block. The total time taken for the
reconstruction of the hazy image is given as

T ms = TMC − + TFG + TAL + TRecovery (16)

where TMC, TFG, TAL, TRecovery are the time taken for mean
channel calculation, applying the fast-guided filter, airlight
estimation, and for scene radiance recovery in milliseconds.

Fig. 4  Sample hazy images
(a), (b) From Middlebury, (c), (d) From IHAZE data set

 

Fig. 5  Training and validation accuracy
 

Fig. 6  Results on Middlebury D-Haze data set on sword 1
(a) Wang et al.'s method [3], (b) Cai et al.’s method [24], (c) Zhu et al.'s method [16], (d) Proposed

 

Fig. 7  Results on Middlebury D-Haze data set on the storage
(a) Wang et al.'s method [3], (b) Cai et al.’s method [24], (c) Zhu et al.'s method [16], (d) Proposed

 

Fig. 8  Results on music instruments image from IHaze data set
(a) Wang et al.'s method [3], (b) Cai et al.’s method [24], (c) Zhu et al.'s method [16], (d) Proposed
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Typical values of TMC, TFG, TAL, TRecovery for 1 Mpixel are 33,
1300, 31, and 42 ms, respectively. The total time taken for 1000 ×  

1000 image is 1.57 s and for 200 × 200 image is 0.14 s. It was
observed that computational time increases exponentially for image

Fig. 9  Results on chair image from IHaze data set
(a) Wang et al.'s method [3], (b) Cai et al.’s method [24], (c) Zhu et al.'s method [16], (d) Proposed

 

Table 2 Comparison of SSIM and PSNR with Middlebury D-hazy data set
Wang et al.'s method [3] Cai et al.'s method [24] Zhu et al.'s method [16] Proposed
SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

vintage 0.84 17 0.865 16.72 0.94 18.52 0.94 18.54
umbrella 0.69 14.81 0.85 15.4 0.85 15.6 0.86 15.5
sword 2 0.77 14.11 0.81 18.5 0.68 12.9 0.7 12.6
sword 1 0.27 12.41 0.85 15.07 0.86 15.36 0.86 14.9
storage 0.63 15.14 0.78 15 0.79 11.9 0.74 11.29
sticks 0.86 18.8 0.82 16.8 0.94 20.6 0.95 20.5
shelves 0.88 19.97 0.9 19.79 0.88 18.67 0.89 18.9
recycle 0.81 13.8 0.9 17.12 0.92 18.97 0.9 17.82
play table 0.78 16.9 0.87 16.14 0.83 16.54 0.8 16.3
playroom 0.83 16.7 0.8 14.5 0.83 15.94 0.78 15.1
adirondack 0.8 13.63 0.85 15.4 0.84 14.6 0.87 14.9
backpack 0.84 15.82 0.84 16.2 0.81 15.4 0.84 15.8
bicycle 1 0.8 15.4 0.94 20.9 0.9 18.3 0.96 20.5
cable 0.58 6.6 0.64 8.13 0.64 8 0.67 8.83
classroom 1 0.85 17.2 0.72 10.9 0.79 12.92 0.8 13.88
couch 0.66 14.19 0.68 11.5 0.72 12.64 0.78 13.4
flowers 0.8 13.44 0.74 10.5 0.74 10.5 0.75 12.62
mask 0.73 15.29 0.8 15.4 0.76 14.66 0.74 14.2
Average 0.72 14.25 0.79 14.72 0.78 14.45 0.79 14.59
 

Table 3 SSIM comparison on IHAZE data set
Number Wang et al.'s method [3] Cai et al.’s method [24] Zhu et al.'s method [16] Proposed
1 0.31 0.67 0.149 0.59
2 0.36 0.73 0.2 0.61
3 0.44 0.44 0.04 0.47
4 0.27 0.32 0.03 0.31
5 0.6 0.62 0.09 0.59
 

Table 4 PSNR comparison on IHAZE data set
Number Wang et al.'s method [3] Cai et al.'s method [24] Zhu et al.'s method [16] Proposed
1 9.8 13.8 6.06 10.3
2 12.67 15.55 8.18 14.93
3 11.46 15.54 8.89 14.42
4 8.45 9.18 7.78 9.09
5 11.26 16.81 8.66 15.6
 

Table 5 Computational time (seconds) analysis obtained on Middlebury d-hazy data set
Size of the image Wang et al.'s method [3] Cai et al.’s method [24] Zhu et al.'s method [16] Proposed
200 × 200 0.34 0.59 0.97 0.14
400 × 400 0.4 1.9 12.9 0.45
1000 × 1000 1.04 9.8 11.9 1.57
2864 × 2008 3.4 65.24 20.6 3.46
2356 × 1996 2.77 54 7.8 2.8
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size beyond 1 Mpixel. The execution time of the proposed
approach was relatively less due to its simplicity of mean value
calculation and fast-guided filter. Cai et al.'s method [24] execution
time substantially increases as image size increases due to its very
complex trained model. Zhu et al.'s method [16] and Wang et al.'s
method [3] are simple but their transmission map refinement
algorithms were complex

5 Subjective analysis
Fig. 10 shows the sample real-world hazy images, Figs. 11 and 12
show the comparison of Wang et al.'s [3], Cai et al.'s [24], Zhu et
al.'s methods [16] and the proposed method on real-world images. 
It can be noticed that the proposed method maintains the true
colour of the image. Most of the outdoor images have colourful
objects and their primary colour channel average was relatively
low. In total, 80% of the pixels have values <0.6 (without sky
region). It is found that the pixels that belong to the haze affected
region are relatively high. The proposed method is not based on
patch-wise processing but based on pixel-wise processing. Our
proposed MCP-based technique showed better results compared
with state-of-the-art methods with quantitative and qualitative
analysis.

6 Conclusion
In this paper, we presented a deep neural network for classifying
the hazy image for automatic detection of a hazy image,
implemented, and got 93.4% validation accuracy over 50 epochs.
Also, we introduced an MCP for image dehazing. Our MCP
approach reduced the computational time without compromising at
other performance metrics. Our technique provided better results in
terms of PSNR and SSIM. Limitations of our study were also
noted. We used 2000 image data sets for classification in the future
we can improve the classification accuracy by adding more training
data. However, the proposed method showed a colour shift at sky
regions and colour saturation on IHAZE data set. The results have
shown compromised performance on indoor hazy images and our

future research is focused on segmentation and object identification
in hazy images.
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